Efficient machine learning with resource constraints

Paolo Didier Alfano Ph.D. Candidate

Machine Learning revolution

"Any sufficiently advanced technology is indistinguishable from magic"

Arthur C. Clarke

Machine Learning revolution

"Any sufficiently advanced technology is indistinguishable from magic" Arthur C. Clarke

• Text-to-image generation:

An astronaut riding a horse in photorealistic style.

Machine Learning revolution

"Any sufficiently advanced technology is indistinguishable from magic" Arthur C. Clarke

• Text-to-image generation:

An astronaut riding a horse in photorealistic style.

• Language generation:

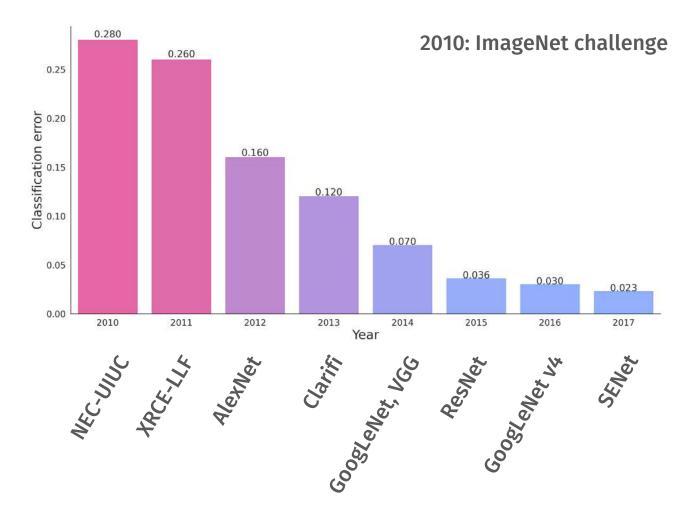
Write a dialogue by Plato where he criticizes the use of language models

Socrates: My friend, I am troubled by the recent rise of these so-called autoregressive language models.

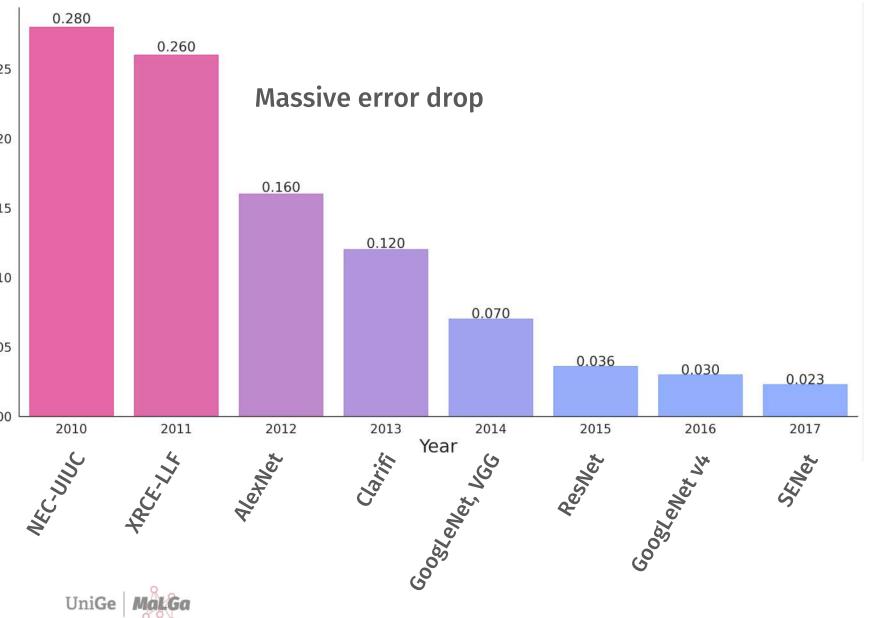
Aristotle: What do you mean, Socrates?

Socrates: I mean that these models are being

Beginning the revolution

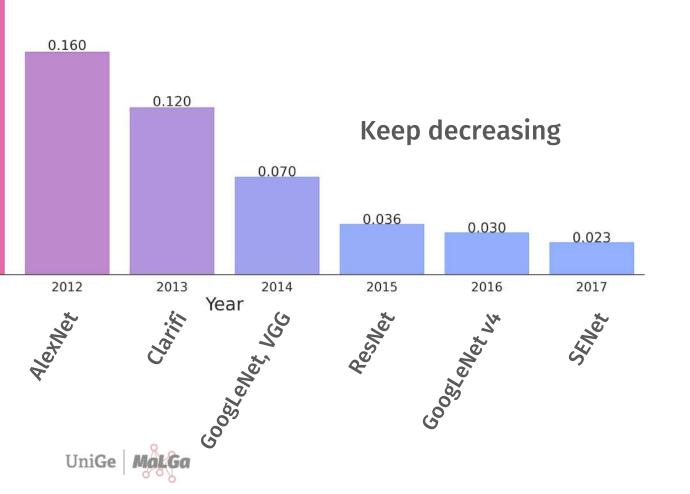


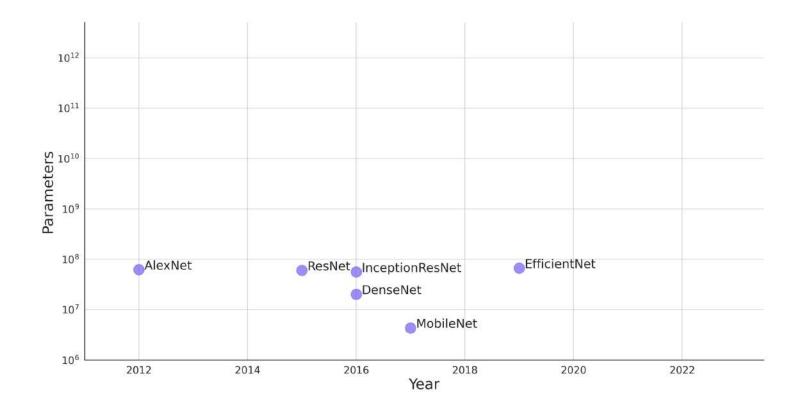
Beginning the revolution

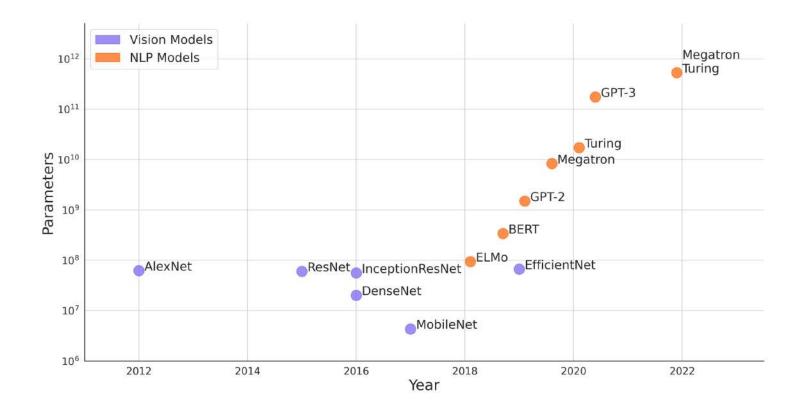


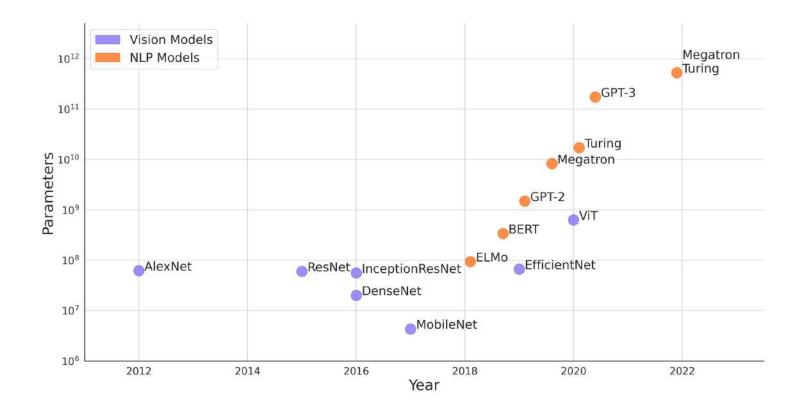
Beginning the revolution

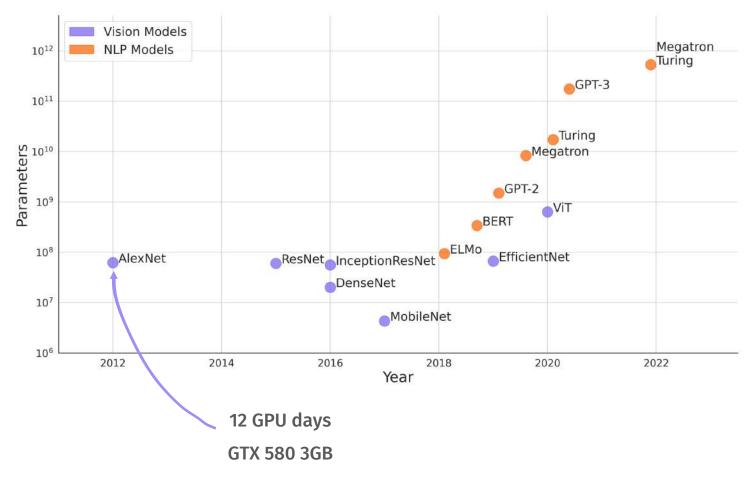
Massive error drop



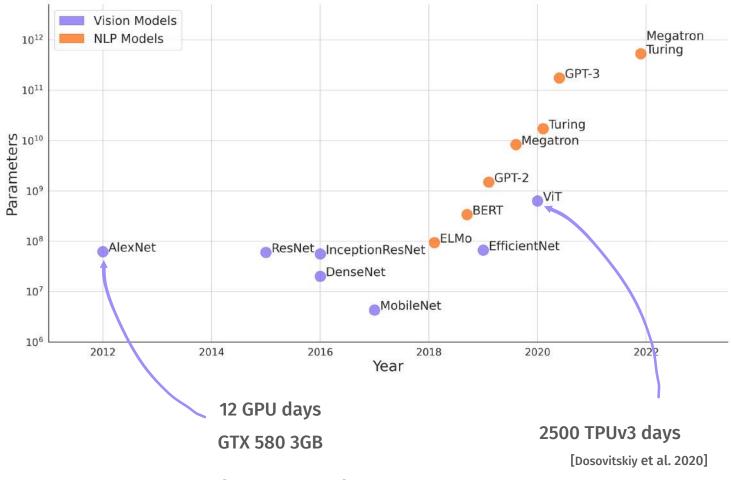








[Krizhevsky et al. 2012]



What about costs?

What about costs?

Roundtrip flight b/w NY and SF (1 passenger)	1,984
Human life (avg. 1 year)	11,023
American life (avg. 1 year)	36,156
US car including fuel (avg. 1 lifetime)	126,000
Transformer (213M parameters) w/ neural architecture search	626,155

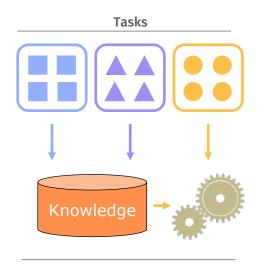
[Strubell et al. 2019]

Tackle costs

Tackle costs

Training time efficiency:

Transfer Learning



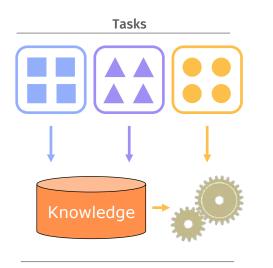
Tackle costs

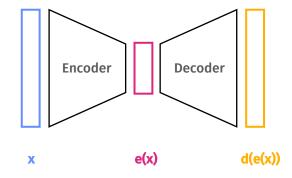
Training time efficiency:

Transfer Learning

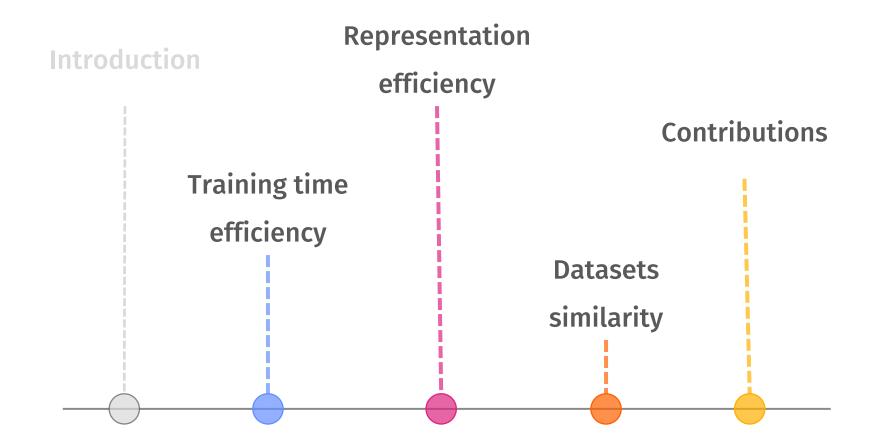
Representation efficiency:

Dimensionality reduction





Outline



Outline

Training time efficiency

Fine-tuning or top-tuning? A study on transfer learning with image pre-trained features and fast kernel methods, Alfano, Pastore, Rosasco, Odone Submitted @IMAVIS Journal

Supervised learning

[Russel and Norvig 2020]

Data:

$$X = \{x_1, \dots, x_n\}$$
$$Y = \{y_1, \dots, y_n\}$$

Supervised learning

[Russel and Norvig 2020]

Data:

$$X = \{x_1, \dots, x_n\}$$
$$Y = \{y_1, \dots, y_n\}$$

Domain:

$$\mathcal{D} = \{X, Y\}$$

Supervised learning

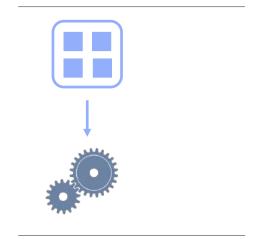
[Russel and Norvig 2020]

Data:

$$X = \{x_1, \dots, x_n\}$$
$$Y = \{y_1, \dots, y_n\}$$

Domain:

$$\mathcal{D} = \{X, Y\}$$

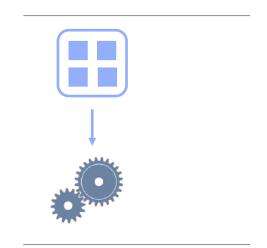


Predictive function: $f: \mathcal{X} \to \mathcal{Y}$

[Zhuang et al 2021]

Domain:
$$\mathcal{D} = \{X, Y\}$$

Predictive function: $f: \mathcal{X} \to \mathcal{Y}$



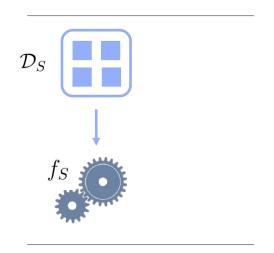
[Zhuang et al 2021]

Domain:
$$\mathcal{D} = \{X,Y\}$$

Predictive function: $f: \mathcal{X} \to \mathcal{Y}$

Source (big): \mathcal{D}_S

 f_S



[Zhuang et al 2021]

Domain:

$$\mathcal{D} = \{X, Y\}$$

Predictive function:

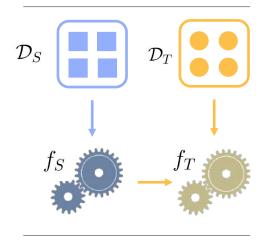
 f_S

$$f: \mathcal{X} \to \mathcal{Y}$$

 f_T ?

C

Target Source (big): (small): \mathcal{D}_T \mathcal{D}_S



Models

[Zhuang et al 2021]

Domain:

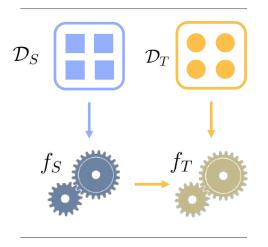
$$\mathcal{D} = \{X, Y\}$$

Predictive function:

$$f: \mathcal{X} \to \mathcal{Y}$$

 f_T ?

Source	Target
(big):	(small):
\mathcal{D}_S	\mathcal{D}_T



Models

Can we exploit f_S ?

 f_S

[Garcia-Gasulla et al 2018] [Kornblith et al 2018]

ImageNet (ILSVRC)

[Russakovsky et al 2015]

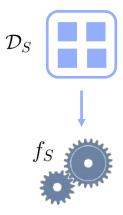
- 1.3 million labeled images
- 1.000 different labels

ImageNet (ILSVRC)

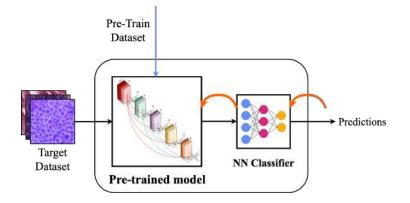
[Russakovsky et al 2015]

- 1.3 million labeled images
- 1.000 different labels

Best models adapted to it



1) Fine Tuning



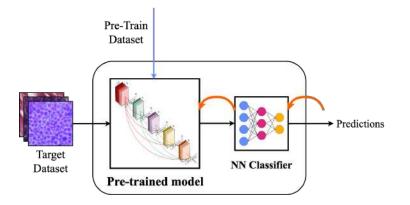
[Goodfellow et al 2016]

1) Fine Tuning

$$\Phi_{FT} =$$

$$\circ \underbrace{\Phi_C \circ \ldots \circ \Phi_1(x)}$$

Convolutional layers



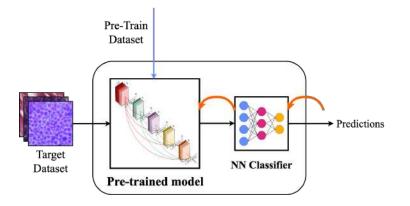
[Goodfellow et al 2016]

1) Fine Tuning

$$\Phi_{FT} = \underbrace{\Phi_{C+L} \circ \ldots \Phi_{C+1}}_{\text{Fully connected lower}} \circ \underbrace{\Phi_C \circ \ldots \circ \Phi_1(x)}_{Connected lower}$$

Fully connected layers

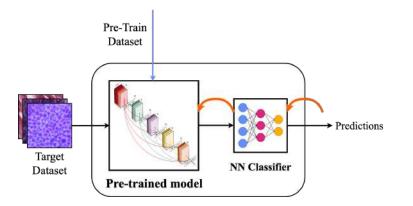
Convolutional layers



[Goodfellow et al 2016]

1) Fine Tuning

$$\Phi_{FT} = \underbrace{\Phi_{C+L} \circ \ldots \Phi_{C+1}}_{\text{Fully connected layers}} \circ \underbrace{\Phi_C \circ \ldots \circ \Phi_1(x)}_{\text{Convolutional layers}}$$



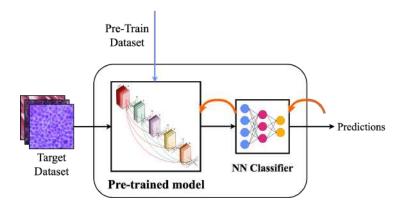
[Goodfellow et al 2016]

UniGe | Mal Ga

• All parameters updated

1) Fine Tuning

$$\Phi_{FT} = \underbrace{\Phi_{C+L} \circ \ldots \Phi_{C+1}}_{\text{Fully connected layers}} \circ \underbrace{\Phi_C \circ \ldots \circ \Phi_1(x)}_{\text{Convolutional layers}}$$

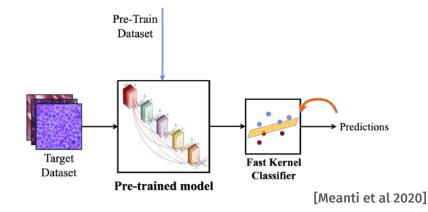


[Goodfellow et al 2016]

• All parameters updated

• Adaptive

2) Top-Tuning

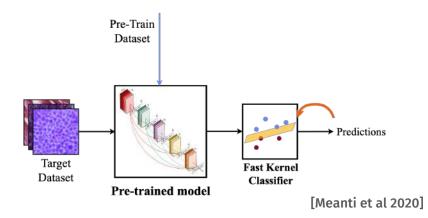


2) Top-Tuning

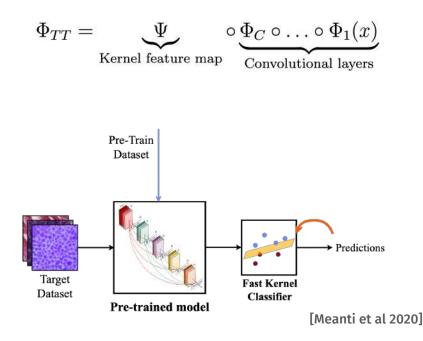
 $\Phi_{TT} =$

$$\underbrace{\Phi_C \circ \ldots \circ \Phi_1(x)}$$

Convolutional layers

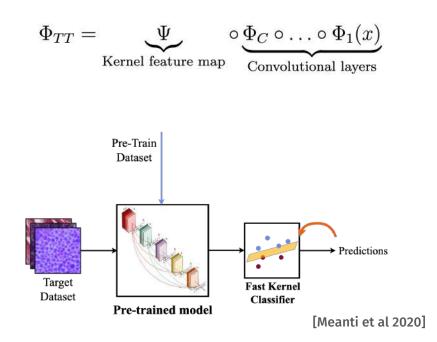


2) Top-Tuning



• Only Fast Kernel updated

2) Top-Tuning

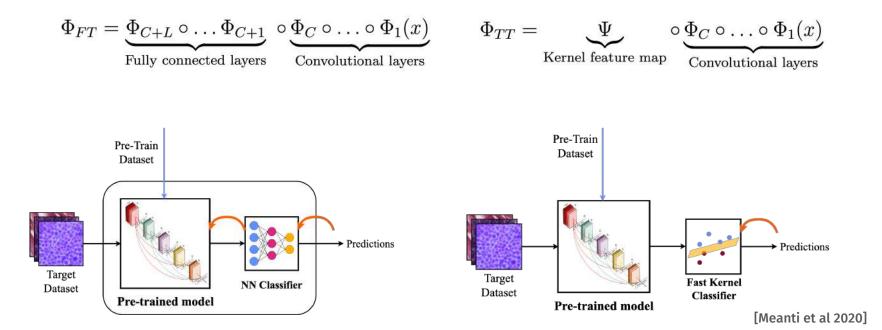


• Only Fast Kernel updated

• Faster

1) Fine Tuning

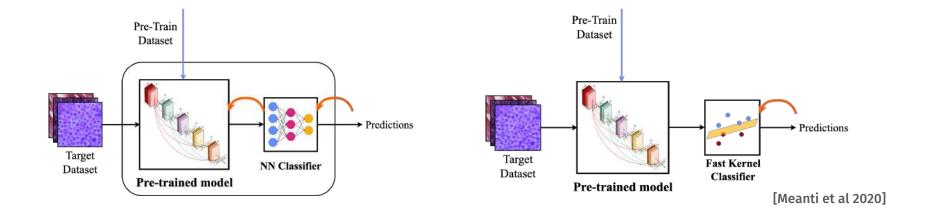
2) Top-Tuning



UniGe | MalGa

1) Fine Tuning

2) Top-Tuning



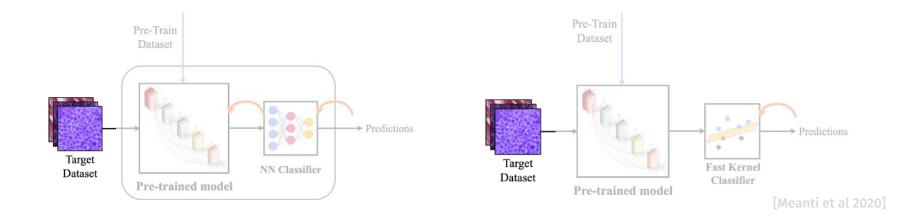
Accuracy

Training time

Best model?

Target dataset

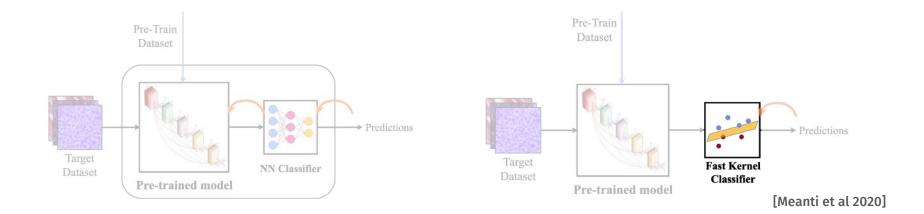
1) Fine Tuning



Classifier

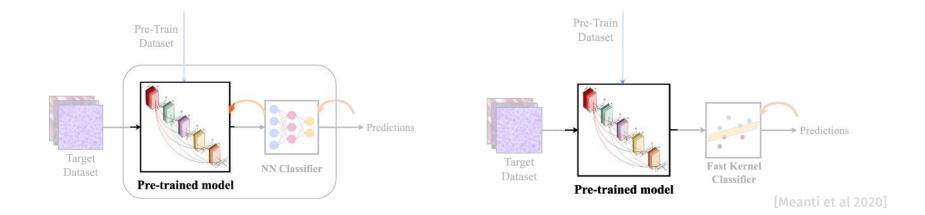
1) Fine Tuning

2) Top-Tuning



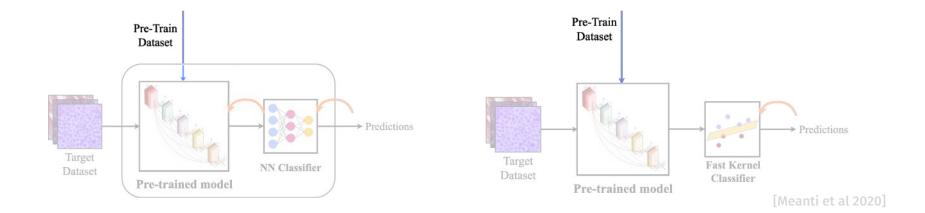
Pre-trained model

1) Fine Tuning



Pre-train source

1) Fine Tuning



Target datasets

32 Target datasets

Small to medium size

Dataset name	#images (Tr/Te)	Img. size mean	#classes
AFHQ (AF) [58]	13.167/1.463	512×512	3
Beans (BE) [59]	1.167/128	500×500	3
Best artworks (BA)[60]	7.896/878	980×921	50
Boat types (BT)[61]	1.315/147	905×1234	9
Caltech-101 (C101)[62]	3.060/6.084	251×282	102
Cassava (CSV)[63]	7.545/1.885	573×611	5
Cats vs Dogs (CVSD) [64]	20.935/2.327	365×410	2
Chest xray (CXRAY) [65]	4.708/524	968×1321	2
CIFAR10 (CIF10) [66]	50.000/10.000	32×32	10
CIFAR100 (CIF100) [66]	50.000/10.000	32×32	100
Citrus leaves (CLV) [67]	534/60	256×256	4
Colorectal hist (COL) [68]	4.500/500	150×150	8
Deep weeds (DW) [69]	15.758/1.751	256×256	9
DTD (DTD)[70]	3.760/1.880	453×500	47
EuroSAT (ES) [71]	24.300/2.700	64×64	10
FGVC Aircraft (AIR) [72]	6.667/3.333	353×1056	100
Footb vs Rugby (FVSR) [73]	2.203/245	618×788	2
Gemstones (GEM) [74]	2.571/286	330×335	87
Hors or Hum (HVSH) [75]	1.027/256	300×300	2
iCubWorld subset (ICUB)[38]	86.400/9.600	256×256	10
Indian Food (IF) [76]	3.600/400	550 imes 610	80
Make No Make(MVSN)[77]	1.355/151	211×246	2
Malaria (MAL) [78]	24.802/2.756	133×132	2
Meat quality (MQA) [79]	1.706/190	720×1280	2
Oxford Flowers (OF) [80]	2.040/6.149	538×624	102
Oxford-IIIT Pets (OP) [81]	3.680/3.669	383×431	37
Plankton (PL) [82]	4.500/500	106×120	10
Sars Covid (SCOV) [83]	2.232/249	260×350	2
Stanford Cars (SC) [84]	8.144/8.041	308×573	196
Stanford Dogs (SD) 85	12.000/8.580	386×443	120
Tensorflow Flowers(TFF) [86]	3.303/367	272×365	5
Weather (MW) [87]	1.012/113	335×506	4

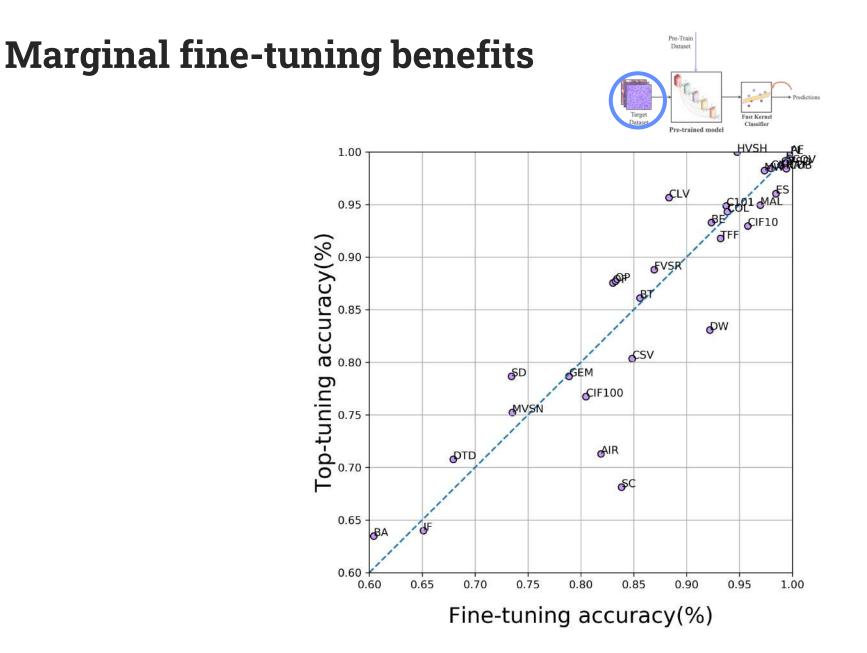
Target datasets

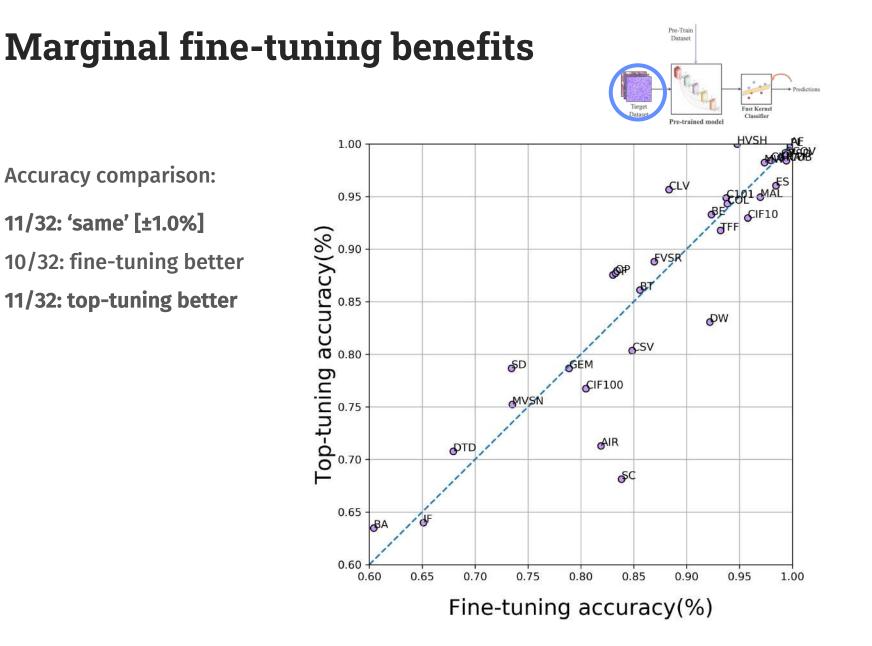
32 Target datasets

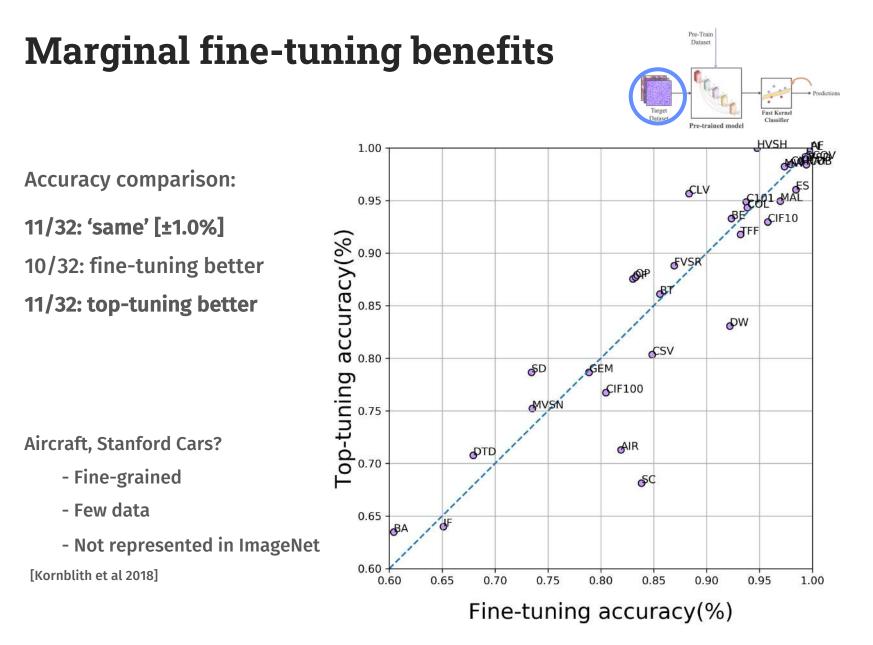
Small to medium size

On average 11.746 images 35 classes

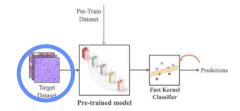
Dataset name	#images (Tr/Te)	Img. size mean	#classes
AFHQ (AF) 58	13.167/1.463	512×512	3
Beans $(BE)[59]$	1.167/128	500×500	3
Best artworks (BA)[60]	7.896/878	980×921	50
Boat types (BT) 61	1.315/147	905×1234	9
Caltech-101 (C101) [62]	3.060/6.084	251×282	102
Cassava (CSV) [63]	7.545/1.885	573×611	5
Cats vs Dogs (CVSD) [64]	20.935/2.327	365×410	2
Chest xray (CXRAY) [65]	4.708/524	968×1321	2
CIFAR10 (CIF10) [66]	50.000/10.000	32×32	10
CIFAR100 (CIF100) [66]	50.000/10.000	32×32	100
Citrus leaves (CLV) [67]	534/60	256×256	4
Colorectal hist (COL) [68]	4.500/500	150×150	8
Deep weeds (DW) [69]	15.758/1.751	256×256	9
DTD (DTD)[70]	3.760/1.880	453×500	47
EuroSAT (ES) [7]	24.300/2.700	64×64	10
FGVC Aircraft (AIR)[72]	6.667/3.333	353×1056	100
Footb vs Rugby (FVSR) [73]	2.203/245	618×788	2
Gemstones (GEM) [74]	2.571/286	330×335	87
Hors or Hum (HVSH) [75]	1.027/256	300×300	2
iCubWorld subset (ICUB)[38]	86.400/9.600	256×256	10
Indian Food (IF) [76]	3.600/400	550 imes 610	80
Make No Make(MVSN)[77]	1.355/151	211×246	2
Malaria (MAL) [78]	24.802/2.756	133×132	2
Meat quality (MQA) [79]	1.706/190	720×1280	2
Oxford Flowers (OF) [80]	2.040/6.149	538×624	102
Oxford-IIIT Pets (OP) [81]	3.680/3.669	383×431	37
Plankton (PL) [82]	4.500/500	106×120	10
Sars Covid (SCOV) [83]	2.232/249	260×350	2
Stanford Cars (SC) [84]	8.144/8.041	308×573	196
Stanford Dogs (SD) [85]	12.000/8.580	386×443	120
Tensorflow Flowers(TFF) [86]	3.303/367	272×365	5
Weather (MW) [87]	1.012/113	335×506	4

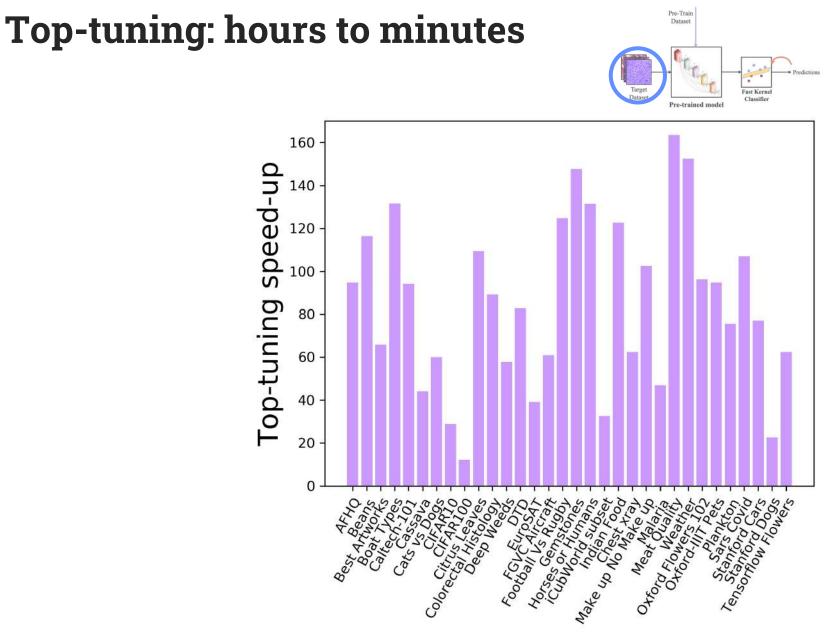


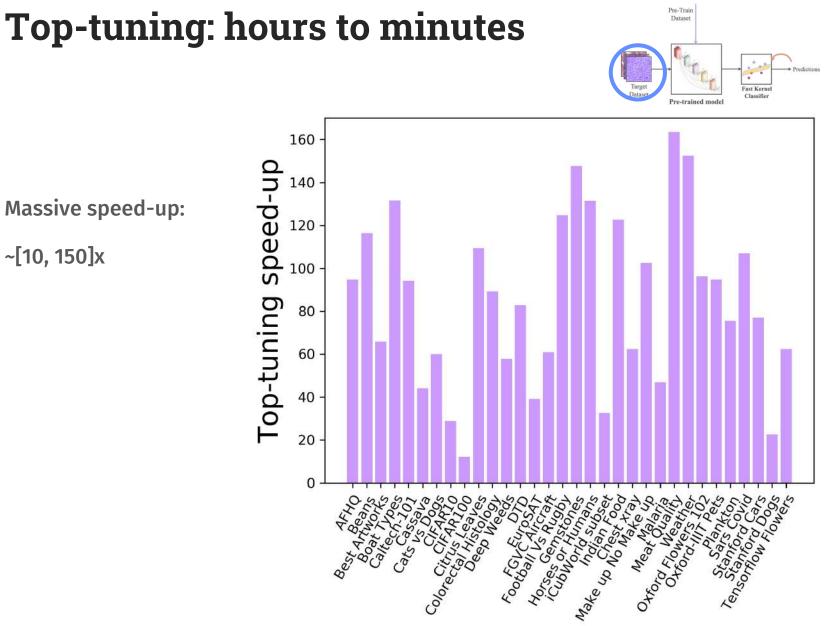




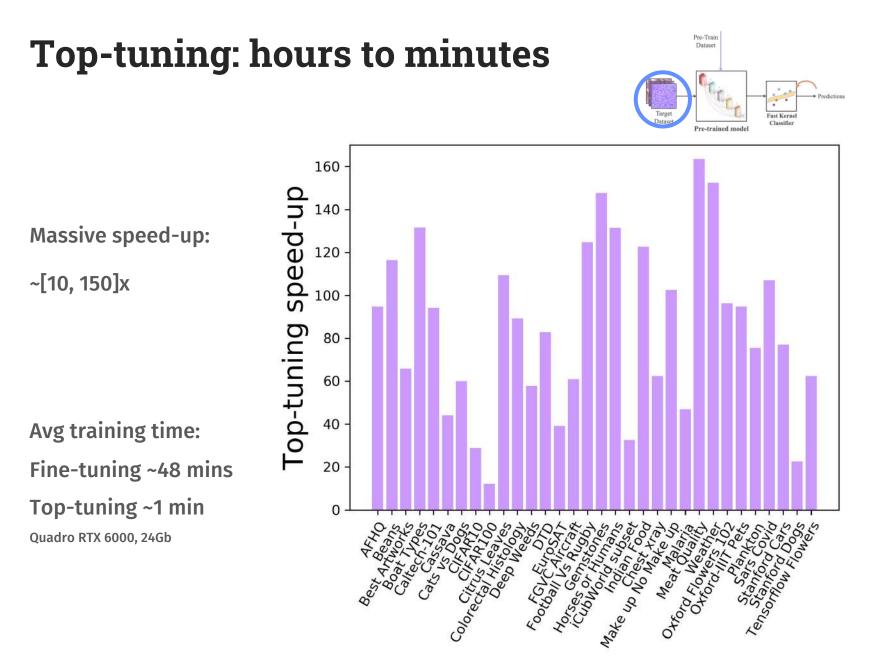
Top-tuning: hours to minutes



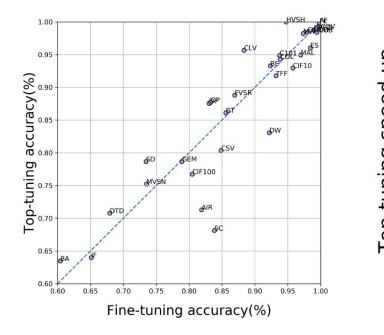


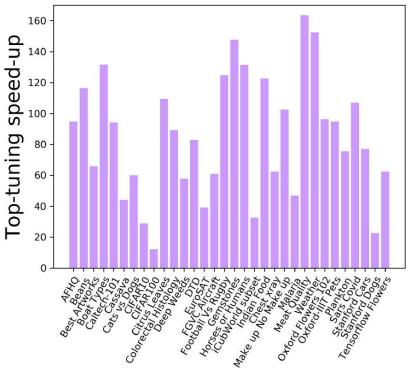


Uni**Ge**

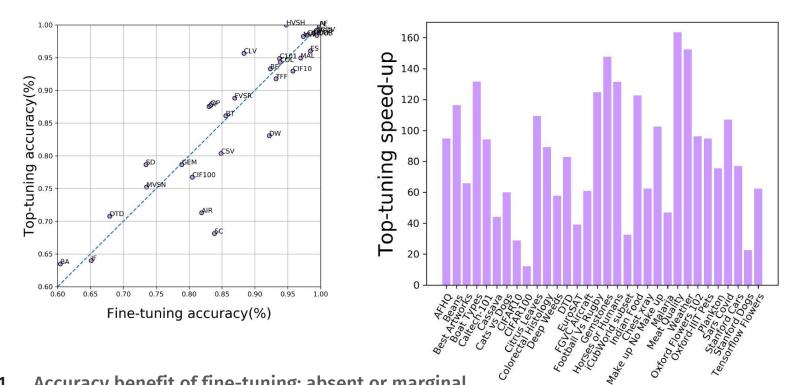


Take home messages



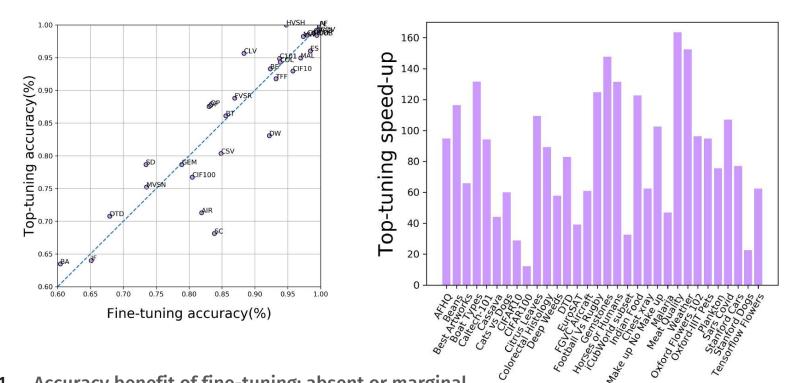


Take home messages



- Accuracy benefit of fine-tuning: absent or marginal 1.
- Top-tuning massive time saving: hours to minutes 2.

Take home messages

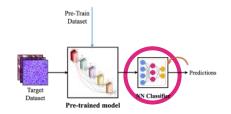


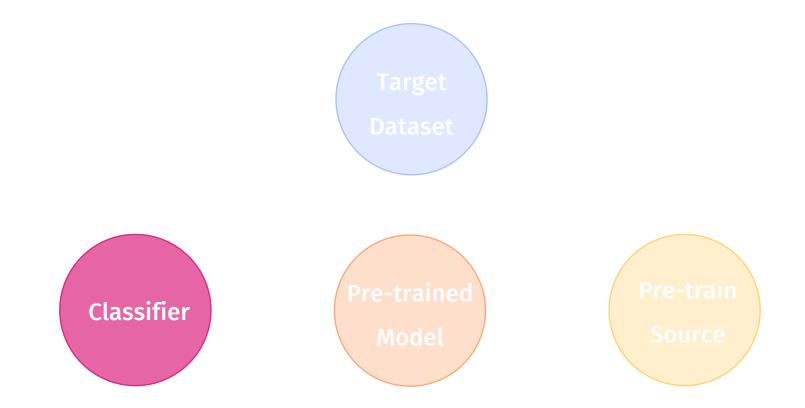
- **1.** Accuracy benefit of fine-tuning: absent or marginal
- 2. Top-tuning massive time saving: hours to minutes

Results robustness?

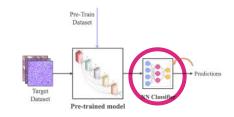
Ablation study

Ablation study

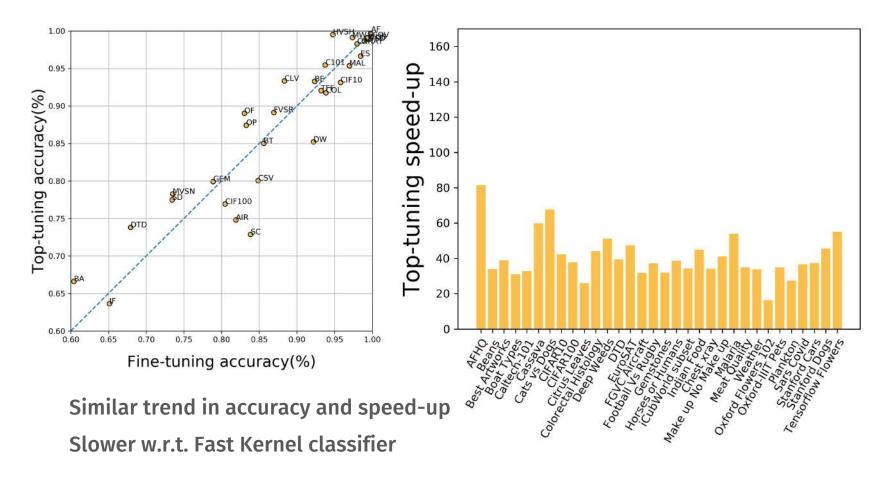




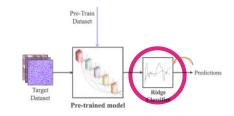
Classifier: low dependency



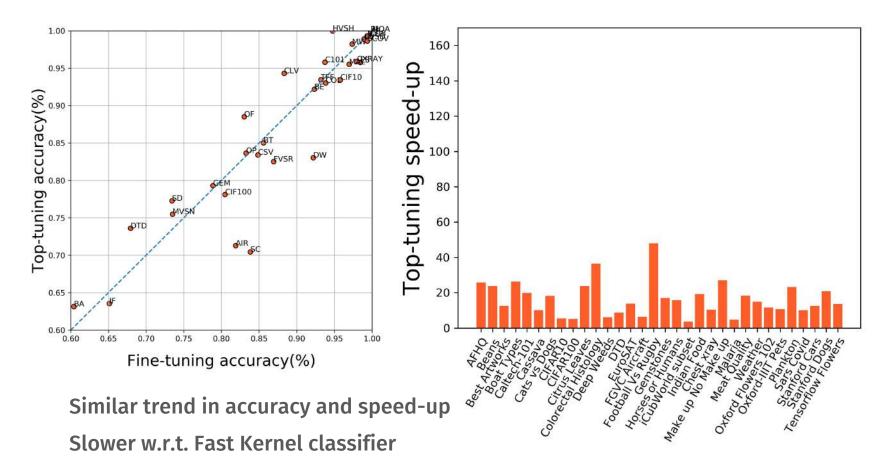
Fully connected Neural Network



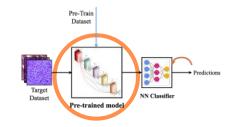
Classifier: low dependency

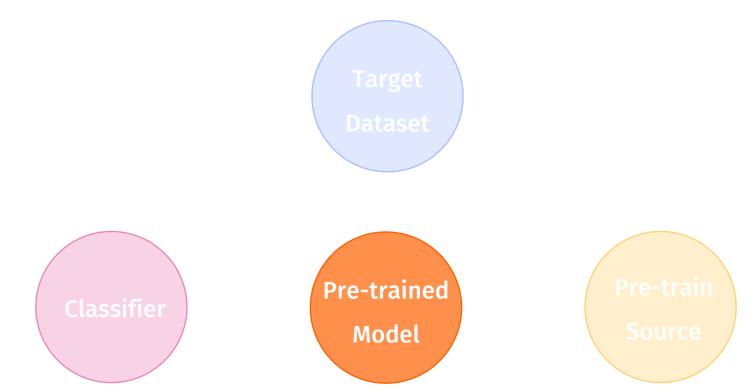


Ridge Regression Classifier

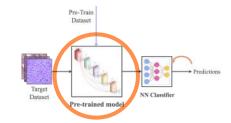


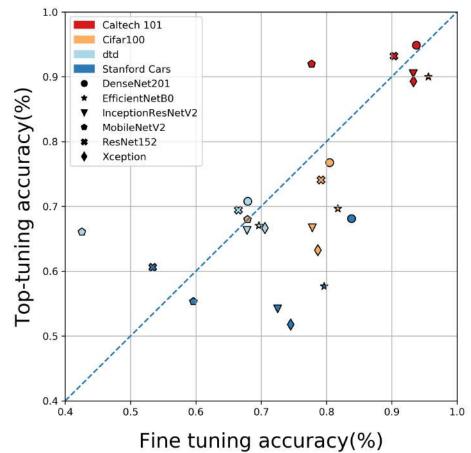
Ablation study



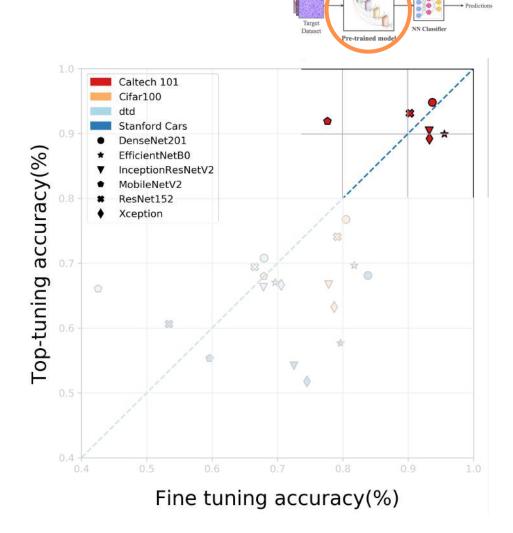


Low impact of pre-trained model

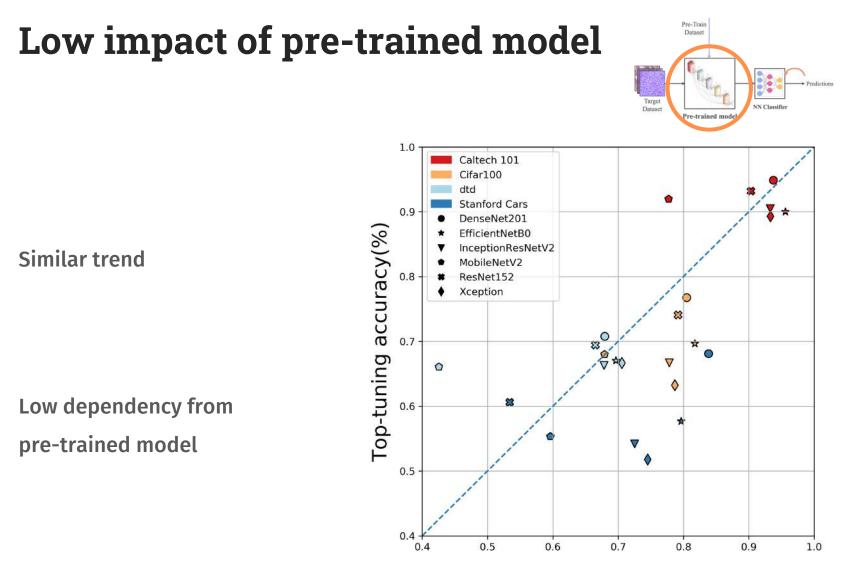




Low impact of pre-trained model



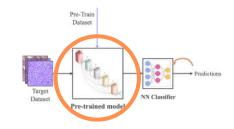
Pre-Train Dataset

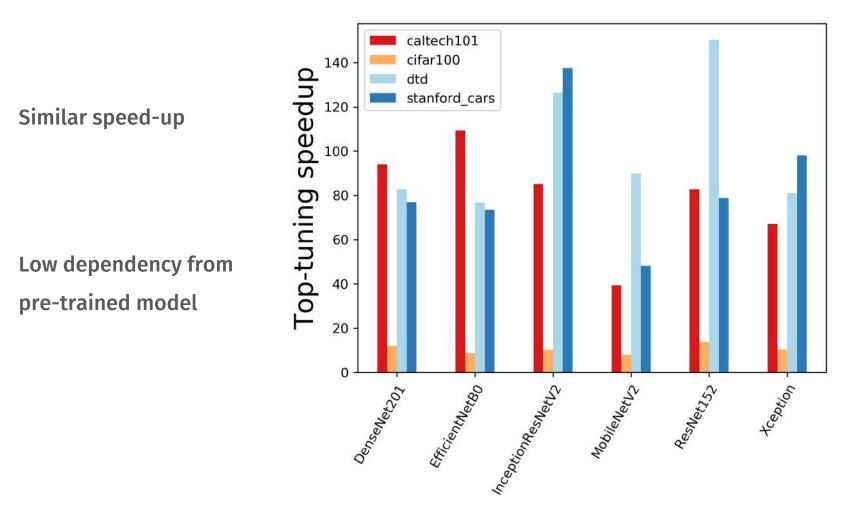


Fine tuning accuracy(%)

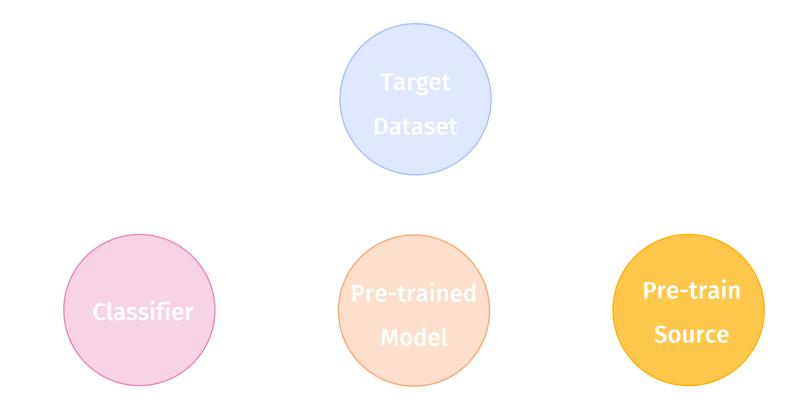
Uni**Ge** | Mal Ga

Low impact of pre-trained model





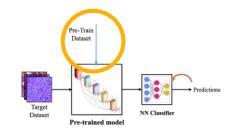
Ablation study



Pre-train, general infos

3 additional pre-trains with same #images: Cifar100, ImageNet100, ImageNet50k

Pre-train, general infos

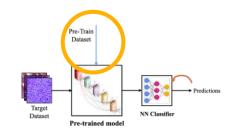


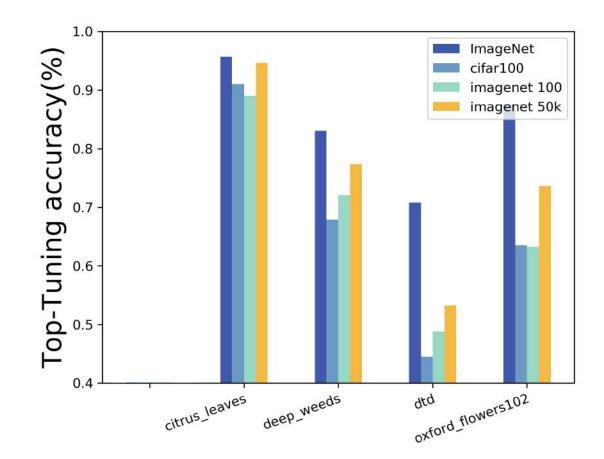
3 additional pre-trains with same #images: Cifar100, ImageNet100, ImageNet50k

W.r.t. ImageNet:

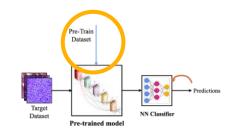
Cifar100:	low amount of classes	many samples per class
ImageNet100:	low amount of classes	many samples per class
ImageNet50k:	high amount of classes	few samples per class

Semantic variability matters

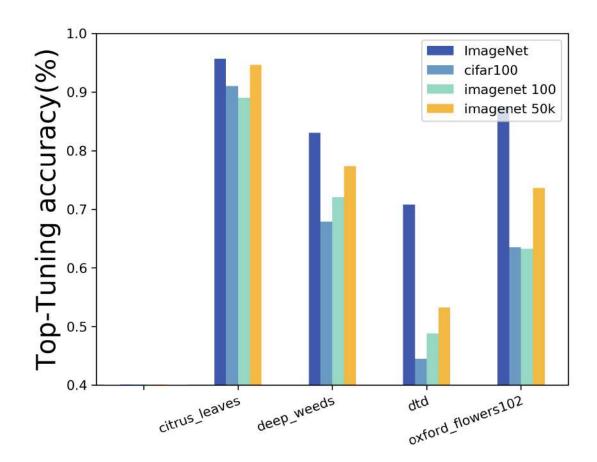




Semantic variability matters



Whole ImageNet always better

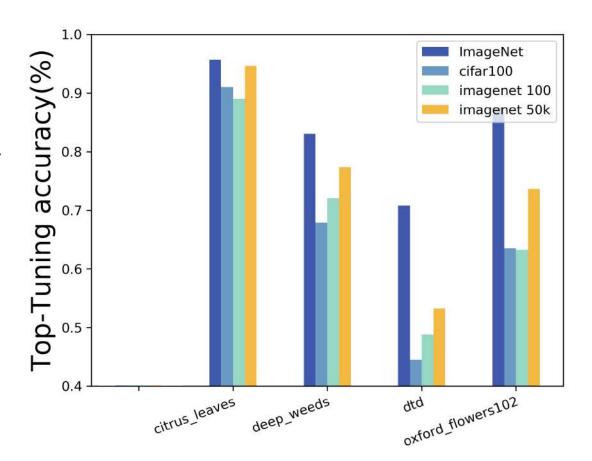


Semantic variability matters

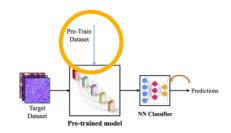


Whole ImageNet always better

ImageNet50k 2° best choice..

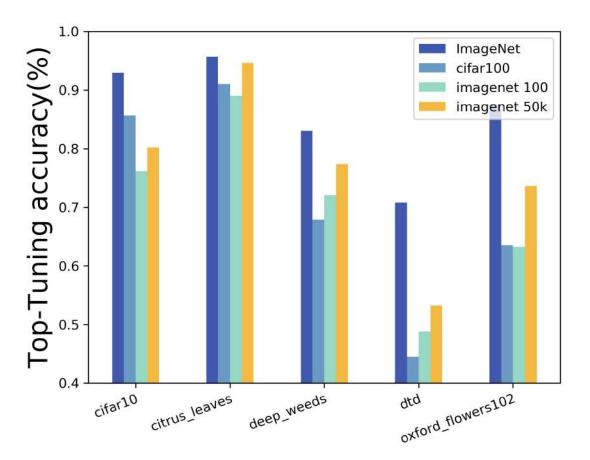


Semantic variability matters

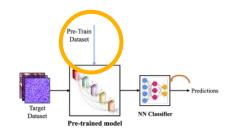


Whole ImageNet always better

ImageNet50k 2° best choice.. ..except on cifar10 target



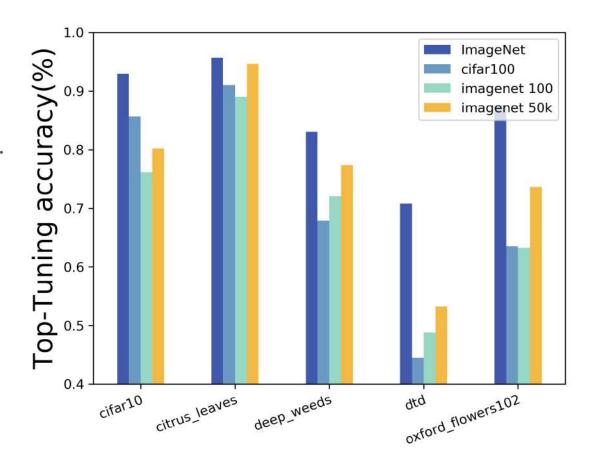
Semantic variability matters



Whole ImageNet always better

ImageNet50k 2° best choice.. ..except on cifar10 target

> Semantic variability matters!



• Accuracy benefit of fine-tuning: absent or marginal

• Accuracy benefit of fine-tuning: absent or marginal

• Top-tuning massive time saving: hours to minutes

• Accuracy benefit of fine-tuning: absent or marginal

• Top-tuning massive time saving: hours to minutes

• Consistency across architectural design choices

Pre-trained features role

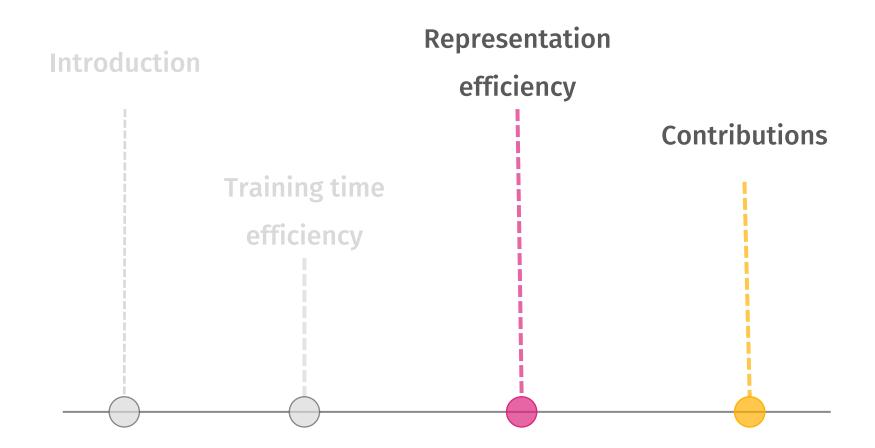
"Universal" representation?

Beyond image classification?

[Maiettini et al 2018]

[Ceola et al 2022]

Outline



Representation efficiency

Efficient Unsupervised Learning for Plankton Images, Alfano, Rando, Letizia, Pastore, Rosasco, Odone Published @ICPR 2022

Clustering plankton images

Clustering plankton images

5000 images 10 classes

Plankton domain:

Many unlabeled data

Many classes

Embedded device, marine microscopy

Clustering plankton images

5000 images 10 classes

Many unlabeled data

Many classes

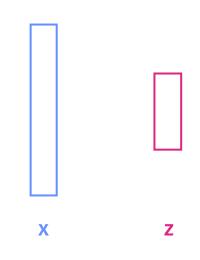
Embedded device, marine microscopy

Image clustering via features extraction:

Pre-trained features, too big!

[Kingma and Welling 2014]

Unsupervised model, no labels

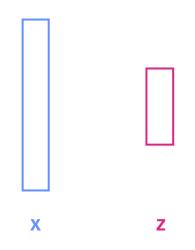


[Kingma and Welling 2014]

Unsupervised model, no labels

Aim: informative encoding

- x ~ 10⁴ elements
- **z** ~ 10² elements

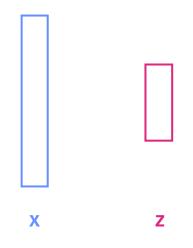


[Kingma and Welling 2014]

Unsupervised model, no labels

Aim: informative encoding

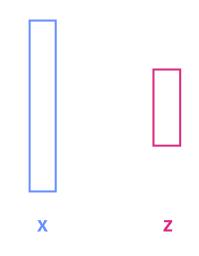
- x ~ 10⁴ elements
- **z** ~ 10² elements



Bottleneck: only main info go through

[Kingma and Welling 2014]

How to compress?

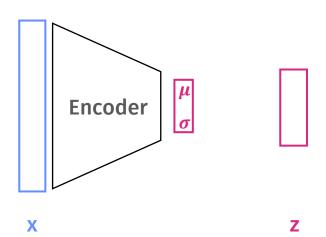


[Kingma and Welling 2014]

How to compress?

3 parts model:

• Encode (compression)

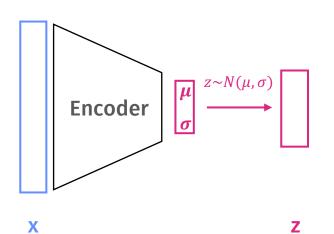


[Kingma and Welling 2014]

How to compress?

3 parts model:

- Encode (compression)
- Sampling

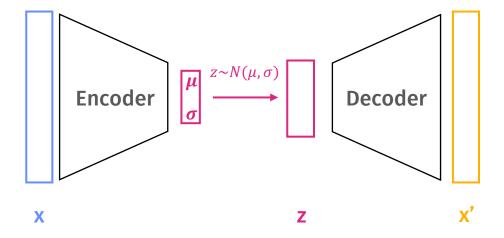


[Kingma and Welling 2014]

How to compress?

3 parts model:

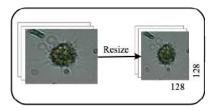
- Encode (compression)
- Sampling

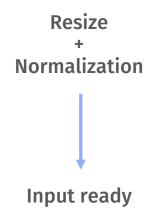


• Decode (decompression)

Pipeline

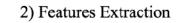
1) Image Pre-Processing

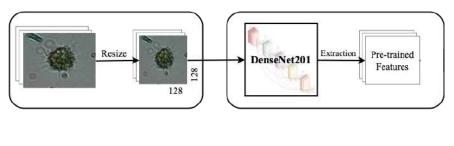


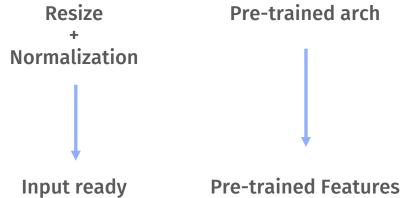


Pipeline

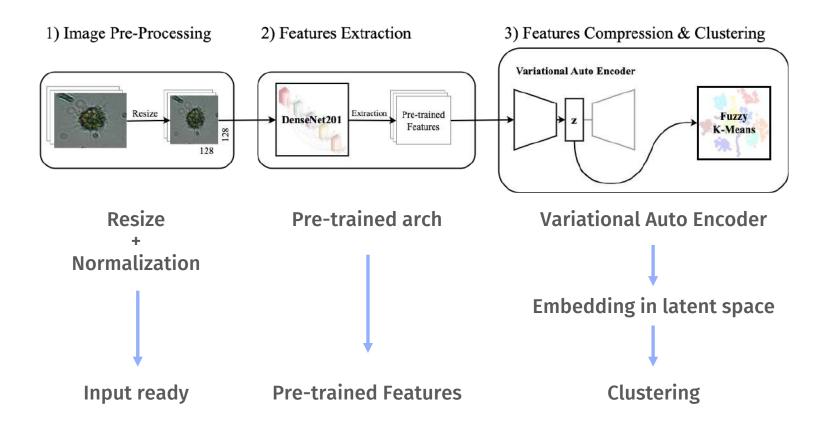
1) Image Pre-Processing





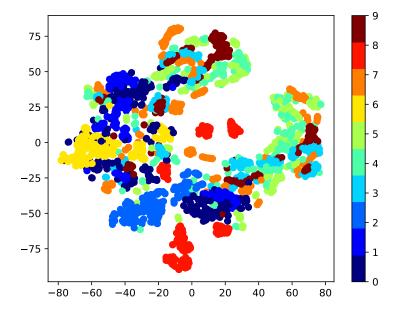


Pipeline



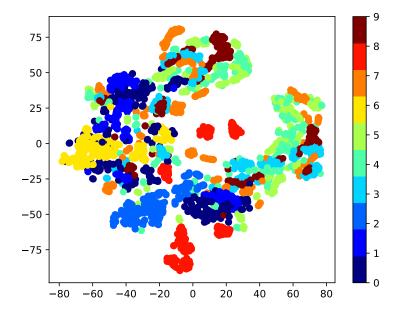
Qualitative results

Qualitative results

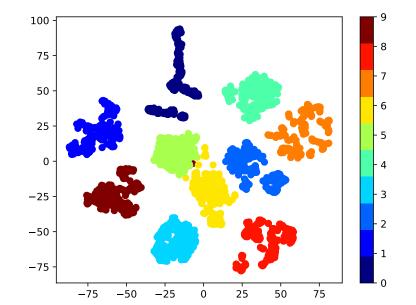


Input: images

Qualitative results



Input: images



Input: pre-trained features

Evaluation by *purity* and *overlaps*

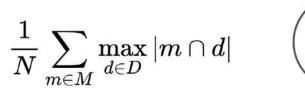
Evaluation by *purity* and *overlaps*

Purity: given N data point, a set of clusters M, a set of classes D:

$$rac{1}{N}\sum_{m\in M} \max_{d\in D} |m\cap d|$$

Evaluation by *purity* and *overlaps*

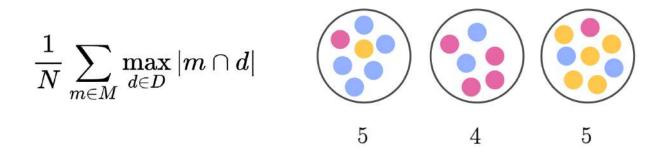
Purity: given N data point, a set of clusters M, a set of classes D:



5

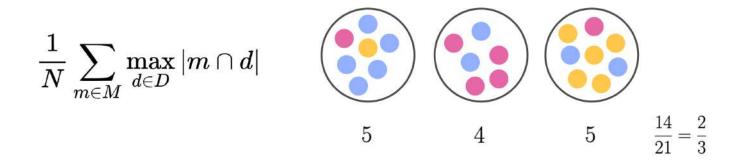
Evaluation by *purity* and *overlaps*

Purity: given N data point, a set of clusters M, a set of classes D:



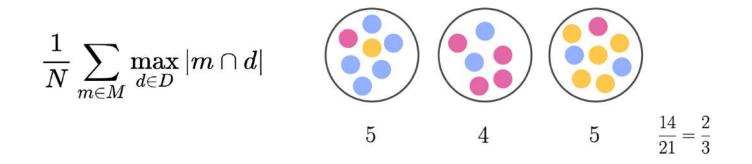
Evaluation by *purity* and *overlaps*

Purity: given N data point, a set of clusters M, a set of classes D:



Evaluation by *purity* and *overlaps*

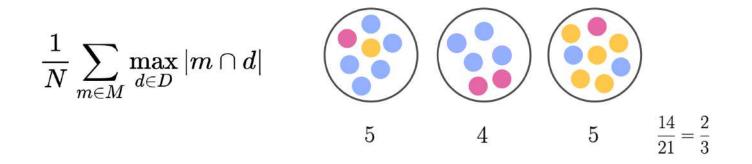
Purity: given N data point, a set of clusters M, a set of classes D:



Overlaps: #classes lost

Evaluation by *purity* and *overlaps*

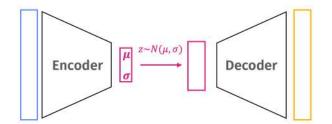
Purity: given N data point, a set of clusters M, a set of classes D:



Overlaps: #classes lost

Algorithm/Z	10	30	50	100	500
image-VAE	0.53 ± 0.017				
	(1.4 ± 0.5)	(1.6 ± 0.49)	(2.0 ± 0.63)	(1.6 ± 0.48)	(2.0 ± 0.0)
FE_{r_2} -VAE	0.98 ± 0.01	0.98 ± 0.03	0.98 ± 0.01	0.98 ± 0.02	0.98 ± 0.02
	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)

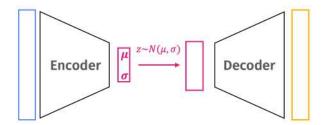
Z: latent space dimension



Algorithm/Z	10	30	50	100	500
image-VAE	0.53 ± 0.017				
	(1.4 ± 0.5)	(1.6 ± 0.49)	(2.0 ± 0.63)	(1.6 ± 0.48)	(2.0 ± 0.0)
FE_{r_2} -VAE	0.98 ± 0.01	0.98 ± 0.03	0.98 ± 0.01	0.98 ± 0.02	0.98 ± 0.02
	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)

Z: latent space dimension

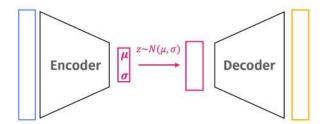
Huge difference image-features



Algorithm/Z	10	30	50	100	500
image-VAE	0.53 ± 0.017				
	(1.4 ± 0.5)	(1.6 ± 0.49)	(2.0 ± 0.63)	(1.6 ± 0.48)	(2.0 ± 0.0)
FE_{r_2} -VAE	0.98 ± 0.01	0.98 ± 0.03	0.98 ± 0.01	0.98 ± 0.02	0.98 ± 0.02
	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)

Z: latent space dimension

Huge difference image-features

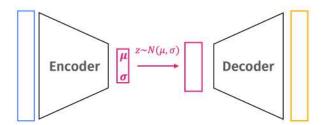


Z relevant?

Algorithm/Z	10	30	50	100	500
image-VAE	0.53 ± 0.017				
	(1.4 ± 0.5)	(1.6 ± 0.49)	(2.0 ± 0.63)	(1.6 ± 0.48)	(2.0 ± 0.0)
FE_{r_2} -VAE		0.98 ± 0.03	0.98 ± 0.01	0.98 ± 0.02	0.98 ± 0.02
	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)	(0.0 ± 0.0)

Z: latent space dimension

Huge difference image-features



Z relevant? Yes, in fine-grained datasets

• Pretrained features & Variational Auto Encoders, effective tool

• Pretrained features & Variational Auto Encoders, effective tool

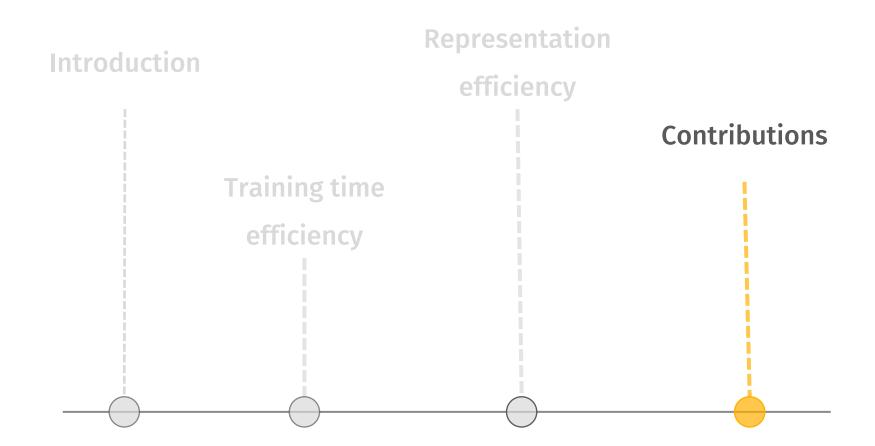
• Reduced size, good for embedded devices

• Pretrained features & Variational Auto Encoders, effective tool

• Reduced size, good for embedded devices

• Unsupervised pipeline

Outline



Contributions

Contributions

• Training time efficiency:

Top-tuning outperforming fine-tuning

Contributions

Training time efficiency:
Top-tuning outperforming fine-tuning

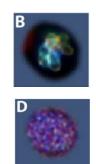
Representation efficiency:
Clustering for embedded devices

Developments

Real-time touch via vision

[Lambeta et al. 2020]

Scalable synthetic cells engineering



Embedded pose and action recognition

[Hachiuma et al. 2023]

Publications

Fine-tuning or top-tuning? A study on transfer learning with image pre-trained features and fast kernel methods, Alfano, Pastore, Rosasco, Odone Under revision @IMAVIS Journal

Efficient Unsupervised Learning for Plankton Images, Alfano, Rando, Letizia, Pastore, Rosasco, Odone Published @ICPR 2022

An unsupervised learning approach to resolve phenotype to genotype mapping in budding yeasts vacuoles, Alfano, Pastore Under revision @ICIAP conference 2023

References

[Dosovitskiy et al. 2020]: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [Hachiuma et al. 2023]: Unified Keypoint-based Action Recognition Framework via Structured Keypoint Pooling [Kingma and Welling 2014]: Auto-Encoding Variational Bayes [Kornblith et al 2018]: Do better ImageNet models transfer better? [Krizhevsky et al. 2012]: ImageNet Classification with Deep Con-volutional Neural Networks [Lambeta et al. 2020]: DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor with Application to **In-Hand Manipulation** [Moro et al. 2022]: Markerless vs. Marker-Based Gait Analysis: A Proof of Concept Study [Strubell et al. 2019]: Energy and Policy Considerations for Deep Learning in NLP [Russakovsky et al 2015]: Imagenet large scale visual recognition challenge [Russel and Norvig 2020]: Artificial Intelligence: A Modern Approach, fourth edition [Zhuang et al 2021]: A Comprehensive Survey on Transfer Learning

