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Machine Learning revolution
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“Any sufficiently advanced technology 

is indistinguishable from magic”

Arthur C. Clarke

• Text-to-image generation:

• Language generation:

An astronaut riding a horse in photorealistic style.

Write a dialogue by Plato where he 

criticizes the use of language models 
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12 GPU days

GTX 580 3GB 

[Krizhevsky et al. 2012]
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2500 TPUv3 days
[Dosovitskiy et al. 2020]

What

12 GPU days

GTX 580 3GB 

[Krizhevsky et al. 2012]
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What about costs?

[Strubell et al. 2019]
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Tasks

Models

Knowledge

Encoder Decoder

x e(x) d(e(x))

Training time efficiency:

Transfer Learning

Representation efficiency:

Dimensionality reduction
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Training time 
efficiency

Fine-tuning or top-tuning? A study on transfer learning with image pre-trained features and fast kernel 

methods, Alfano, Pastore, Rosasco, Odone

Submitted @IMAVIS Journal
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Data:

[Russel and Norvig 2020]
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Data:

Domain:

[Russel and Norvig 2020]
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Data:

Domain:

Predictive function: Models

[Russel and Norvig 2020]
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Models

[Zhuang et al 2021]
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Models

Source 

(big):

[Zhuang et al 2021]
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Models

Source 

(big):

Target 

(small):

?

[Zhuang et al 2021]
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Transfer learning
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Models

Source 

(big):

Target 

(small):

?

[Zhuang et al 2021]

[Garcia-Gasulla et al 2018]
[Kornblith et al 2018]
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1.3 million labeled images

1.000 different labels

[Russakovsky et al 2015]



ImageNet (ILSVRC)
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1.3 million labeled images

1.000 different labels

ImageNet as source domain

Best models adapted to it

[Russakovsky et al 2015]
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Fine-Tuning vs Top-tuning
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1) Fine Tuning 2) Top

• All parameters updated

• Adaptive

[Goodfellow et al 2016]
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2) Top-Tuning

[Meanti et al 2020]

updated
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2) Top-Tuning

• Only Fast Kernel updated

[Meanti et al 2020]
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2) Top-Tuning

• Only Fast Kernel updated

• Faster

[Meanti et al 2020]

updated
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1) Fine Tuning 2) Top-Tuning

[Meanti et al 2020]
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Best model?

2) Top-Tuning1) Fine Tuning

[Meanti et al 2020]

Accuracy Training time
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1) Fine Tuning 2) Top-Tuning

[Meanti et al 2020]
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1) Fine Tuning 2) Top-Tuning

[Meanti et al 2020]
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1) Fine Tuning 2) Top-Tuning

[Meanti et al 2020]



Pre-train source
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1) Fine Tuning 2) Top-Tuning

[Meanti et al 2020]
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32 Target datasets

Small to medium size

On average

11.746 images

35 classes
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Accuracy comparison:

11/32: ‘same’ [±1.0%]

10/32: fine-tuning better

11/32: top-tuning better
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Accuracy comparison:

11/32: ‘same’ [±1.0%]

10/32: fine-tuning better

11/32: top-tuning better

[Kornblith et al 2018]

Aircraft, Stanford Cars?

- Fine-grained

- Few data

- Not represented in ImageNet



Top-tuning: hours to minutes

51



Top-tuning: hours to minutes

52



Top-tuning: hours to minutes

53

Massive speed-up:

~[10, 150]x



Top-tuning: hours to minutes

54

Massive speed-up:

~[10, 150]x

Avg training time:

Fine-tuning ~48 mins

Top-tuning ~1 min
Quadro RTX 6000, 24Gb
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Take home messages

57

1. Accuracy benefit of fine-tuning: absent or marginal

2. Top-tuning massive time saving: hours to minutes

Results robustness?
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Fully connected Neural Network

Similar trend in accuracy and speed-up

Slower w.r.t. Fast Kernel classifier



Classifier: low dependency
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Ridge Regression Classifier

Similar trend in accuracy and speed-up

Slower w.r.t. Fast Kernel classifier
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Similar speed-up

Low dependency from 

pre-trained model
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Pre-train, general infos

70

3 additional pre-trains with same #images: 
Cifar100, ImageNet100, ImageNet50k

W.r.t. ImageNet:

Cifar100: low amount of classes many samples per class

ImageNet100: low amount of classes many samples per class

ImageNet50k: high amount of classes few samples per class
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Semantic variability matters
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Whole ImageNet

always better

ImageNet50k 2° best choice..

..except on cifar10 target

Semantic 

variability

matters! 
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Training time efficiency, conclusions
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• Accuracy benefit of fine-tuning: absent or marginal

• Top-tuning massive time saving: hours to minutes

• Consistency across architectural design choices
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Beyond image classification?

[Ceola et al 2022]

[Maiettini et al 2018]

“Universal” representation?
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Representation
efficiency

Efficient Unsupervised Learning for Plankton Images, Alfano, Rando, Letizia, Pastore, Rosasco, Odone

Published @ICPR 2022
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Plankton domain:

Many unlabeled data

Many classes

Embedded device, marine microscopy

Clustering plankton images
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Plankton domain:

Many unlabeled data

Many classes

Embedded device, marine microscopy

Image clustering via features extraction:

Pre-trained features, too big!

Clustering plankton images
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5000 images

10 classes
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[Kingma and Welling 2014]
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Aim: informative encoding
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Unsupervised model, no labels

Aim: informative encoding

x ~ 104 elements

z ~ 102 elements

Bottleneck: only main info go through

Variational Auto Encoders
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[Kingma and Welling 2014]

x z



How to compress?

Variational Auto Encoders

89

[Kingma and Welling 2014]

x z



How to compress?

3 parts model:

• Encode (compression)

Variational Auto Encoders
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𝝁

𝝈
Encoder

[Kingma and Welling 2014]

x z



How to compress?

3 parts model:

• Encode (compression)

• Sampling

Variational Auto Encoders
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𝝁

𝝈
Encoder

𝑧~𝑁(𝜇, 𝜎)

[Kingma and Welling 2014]

x z



How to compress?

3 parts model:

• Encode (compression)

• Sampling

• Decode (decompression)

Variational Auto Encoders

92

Decoder
𝝁

𝝈
Encoder

𝑧~𝑁(𝜇, 𝜎)

[Kingma and Welling 2014]

x z x’
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Resize
+

Normalization

Input ready

Variational Auto Encoder

Embedding in latent space

Clustering
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Input: images Input: pre-trained features
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Evaluation by purity and overlaps

Purity: given N data point, a set of clusters M, a set of classes D:

Overlaps: #classes lost
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Z: latent space dimension

Huge difference image-features

Z relevant? Yes, in fine-grained datasets
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• Pretrained features & Variational Auto Encoders, effective tool

• Reduced size, good for embedded devices

• Unsupervised pipeline

Representation efficiency, conclusions
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• Training time efficiency:
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Contributions

• Training time efficiency:

Top-tuning outperforming fine-tuning

• Representation efficiency:

Clustering for embedded devices
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Developments

Real-time

touch via vision

[Lambeta et al. 2020]

Scalable synthetic 

cells engineering

Embedded pose and 

action recognition

[Hachiuma et al. 2023]
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Publications

Fine-tuning or top-tuning? A study on transfer learning with image pre-trained 

features and fast kernel methods, Alfano, Pastore, Rosasco, Odone

Under revision @IMAVIS Journal

Efficient Unsupervised Learning for Plankton Images, Alfano, Rando, Letizia, 

Pastore, Rosasco, Odone

Published @ICPR 2022

An unsupervised learning approach to resolve phenotype to genotype mapping in 

budding yeasts vacuoles, Alfano, Pastore

Under revision @ICIAP conference 2023
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