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Abstract

Since machine learning techniques spread in the scienti�c community and in real-world scenar-
ios, their usage has been justi�ed by the impossibility of traditional techniques to deal with simple
problems that require the retrieval of speci�c task-related information. In the beginning, neural
networks were made of a very reduced amount of layers, with a limited capacity to solve compli-
cated problems. However, in the last years, the set of methodologies we usually refer to as deep
learning became the de-facto standard in a large variety of �elds. Their astonishing ability to solve
di�erent kinds of problems has been proven, from very simple and speci�c tasks to more general
problems, such as image recognition, object detection, video recognition, and natural language
processing. In the last two years a new approach, referred to as transformers, has been proposed
showing state-of-the-art performances in similar contexts to the ones covered by convolutional
neural networks. The huge improvement in performances obtained by recent models came at a
cost from di�erent points of view. The number of learnable parameters involved moved from tens
of millions to hundreds of billions in less than ten years coupled with an increase from a few hun-
dred to millions of PFLOPS needed to train better models in terms of performance. Overall, the
amount of energy needed to train the more recent architectures increased drastically in the last few
years showing a problematic situation in terms of resources needed to obtain the next state-of-the-
art performance. In this thesis, we will see di�erent methodologies to alleviate the computational
costs of some typical machine learning problems. First, we will focus on image classi�cation, con-
sidering a simple transfer learning approach that exploits pre-trained convolutional features as
input for a fast kernel method. By performing more than three thousand training processes, we
will show that this fast-kernel approach provides comparable accuracy w.r.t. �ne-tuning, with a
training time that is between one and two orders of magnitude smaller. Then we will introduce
and discuss an unsupervised pipeline that projects input images to a latent space with reduced
dimension, making the clustering operation doable. We will show the pipeline e�ectiveness in
a plankton monitoring context where operating in an unsupervised manner is crucial. Indeed,
studying plankton population in situ is paramount to protect marine ecosystems as they can be
regarded as biosensors. Lastly, we will discuss di�erent methodologies to compare two or more
image datasets. Indeed, each dataset can be seen as a set of points sampled by an unknown distri-
bution that we can estimate and analyze. We will introduce di�erent methodologies to study such
distributions. We will show that, even on simple tasks involving images, the concept of dataset dis-
tance is elusive and very complicated to quantify. It is possible to obtain information on di�erent
image datasets, via good partitioning, as long as we analyze a small datasets subset. Overall, in
this thesis, we will consider a set of techniques that can alleviate machine learning computational
costs, in order to keep them computationally accessible to the scienti�c community.
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1 Introduction

Machine learning is a sub�eld of arti�cial intelligence developing algorithms that enable machines
to improve their performance on a certain task, through experience. Machine learning models are
usually designed to learn from data and make predictions or decisions without explicit instruc-
tions. A key hallmark of this algorithm family is the ability, when properly trained, to generalize
to previously unseen examples.
The term machine learning was coined in 1959 by electrical engineer Arthur Samuel, proposing
the Samuel’s Checkers Player[268], one of the �rst impressive examples of self-learning programs.
In the last sixty years, the machine learning �eld has seen astonishing improvements from di�er-
ent perspectives, and nowadays, the massive usage of machine learning techniques is related to the
ability to deal with complex problems in an automatic way.

The arti�cial neural networks family is a popular model group that completely depends on the
mechanism we have just described. Thanks to the increasing availability of data and computa-
tional resources, the use of neural networks became, in the last decade, a common practice. In the
beginning, neural networks were made of a very reduced amount of components, with a limited
capacity to solve complicated problems. This reduced ability was, at least partly, related to the
small number of neurons in every layer and also to the limited amount of layers[283].
Instead, in the last decade, the complexity of neural networks, evaluated on the number of learn-
able parameters involved, increased exponentially. This behavior is coupled with the model’s ca-
pacity to solve di�cult problems.
This set of methodologies we usually refer to as deep learning techniques[81] became the de-facto
standard in a large variety of �elds. Their astonishing ability to solve di�erent kinds of problems
has been proven, from very simple and speci�c tasks to more general problems. After 2012 con-
volutional neural networks have been the most popular machine learning model. They focus on
a small portion of the data at-a-time via the convolution operation. This approach �ts the image
context as the model’s unit can convolve over the image to grasp useful information.
The neural model’s success is mostly due to the great performances obtained in the ImageNet
large-scale visual recognition challenge(ILSVRC)[246]. In this challenge, given an image as in-
put, every model must distinguish between one thousand di�erent categories, providing as an
answer the most probable category contained in the input image. This operation is performed
after a training process over a set of images composed of approximately one million images.
The extraordinary improvements made via these new models in the ILSVRC competition can be
shown in Figure 1.1. After the introduction of convolutional neural networks between 2011 and
2012, the ILSVRC classi�cation error dropped from 26% to 16% and even to 2%-3% in the next
�ve years when the challenge ended.
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1 Introduction

Figure 1.1: The classi�cation error obtained by winning models in the ImageNet large-scale visual recogni-
tion challenge(ILSVRC) over the last decade. In 2012 the �rst convolutional model was intro-
duced, with a massive error reduction w.r.t. the previous year.

Since their �rst appearance, convolutional neural networks have been applied to a large set of
research �elds including, but not limited to, image recognition, speech recognition, object detec-
tion of images, video recognition, and natural language processing.
Moreover, in the last two years, a new approach referred to as transformers has been proposed,
showing state-of-the-art performances in similar contexts to the ones covered by convolutional
neural networks such as computer vision tasks and image analysis in general.

The huge improvement in performances obtained by recent models came at a cost, from di�erent
points of view. Modern machine learning architectures are often referred to as data hungry mod-
els. Indeed, the amount of labeled and unlabeled data needed by modern architectures increased,
and datasets containing tens or even hundreds of millions of images are used to train neural mod-
els. Such a huge amount of information is needed to set up properly all the parameters de�ning
modern models. The convolutional model introduced in 2012 which won the ILSVRC competi-
tion, i.e. AlexNet, was made by 62.3 million learnable parameters with a training time of between
�ve and six days on two GPUs. Since 2012 a plethora of di�erent architectures has been proposed
with an increasing number of parameters. Some model families such as ResNet, E�cientNet,
and InceptionResNet stuck to a similar amount of parameters. Some others, like MobileNet,
decided to reduce the number of parameters involved to be run on embedded/mobile devices.
Nonetheless, architectures such as VGG moved in the opposite direction with more than 100
million learnable parameters.
Since 2017 with the introduction of the attention mechanism and the transformer architecture for
natural language processing (NLP) problems, the number of parameters involved in the training
process increased exponentially. Some of the �rst introduced models had comparable parame-
ters number w.r.t. convolutional models. Indeed, models such as ELMo and BERT are made by
94 million and 340 million learnable parameters, respectively. Nonetheless, many recent models
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Figure 1.2: Models developed in the last decade with the corresponding amount of learnable parameters.

pushed forward the number of learnable parameters involved. For instance, The GPT-2 model
and the Megatron-LM, introduced in 2019, involved 1.5 billion and 8.3 billion learnable parame-
ters, respectively. The GPT-3 model and the Megatron-Turing NLG models, introduced in 2020,
involve more than a hundred billion parameters. Even if these models are used nowadays to deal
with natural language problems, di�erent models such as Vision Transformer(ViT) have been
proposed to apply the same NLP principles to image classi�cation and analysis in general. A rep-
resentation of parameters involved in some of the most famous machine learning models is shown
in Figure 1.2.

The massive increase in the number of parameters involved in the process is, at least partly, co-
herent with the computational resources involved in the process. The amount of computation
needed to train a modern neural architecture is usually expressed with FLoating point Opera-
tions Per Second(FLOPS). In the last decade, such quantity moved approximately from 4 · 102

PFLOPS of AlexNet to 3 ·108 PFLOPS of GPT-3. Considering that the amount of FLOPS is di-
rectly correlated with energy consumption, the amount of energy needed to train the more recent
architecture increased drastically in the last few years, showing a problematic situation in terms of
resources needed to obtain the next state-of-the-art performance.

This thesis examines various methodologies that aim to mitigate the computational expenses as-
sociated with common machine learning problems. These challenges can be approached from
multiple perspectives, given that modern training processes require di�erent resources, including
training time, physical memory, and the quantity of available data. Therefore, this thesis concen-
trates on these three crucial factors in an e�ort to diminish the impact of machine learning costs.
First, we will consider a simple transfer learning approach that exploits pre-trained convolutional
features as input for a fast kernel method. By performing more than 3000 training processes, in-
volving 32 target datasets and 99 di�erent settings, we will show that this fast-kernel approach
provides comparable accuracy w.r.t. �ne-tuning, with a training time that is between one and two
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1 Introduction

orders of magnitude smaller. We will provide results suggesting that the fast-kernel approach is
indeed a useful alternative to �ne-tuning in small/medium datasets, especially when training ef-
�ciency is crucial. This is typical of robotics devices and autonomous systems, where multiple
training may need to be done on the �y. Moreover, our results will show that the marginal bene�t
of �ne-tuning is low dependent on the neural network architecture used as a pre-trained model.
On the other hand, the choice of an appropriate pre-training dataset has a signi�cant impact on
the obtained accuracy, particularly for the fast-kernel methodology.
After the analysis in terms of training time, we will focus on representation e�ciency. We will
introduce and discuss the impossibility of a clustering algorithm to deal directly with images. In-
deed, even with a low resolution, such images can have tens of thousands of dimensions. At the
same time, the feature output size of modern architectures is usually between a thousand to tens of
thousands of elements. We will show how we implemented an unsupervised pipeline that projects
the input to a latent space with reduced dimension, making the clustering operation doable. We
will show results testing our pipeline e�ectiveness in the plankton monitoring context where oper-
ating in an unsupervised manner is crucial. Indeed, detecting and studying plankton populations
in situ is paramount to protecting marine ecosystems as they can be regarded as biosensors, re�ect-
ing the overall health of the oceans. We will show how we leveraged pre-trained neural network
models to extract expressive feature maps e�ciently, without �ne-tuning. We then use an encoder-
decoder network architecture to perform dimensionality reduction, producing low-dimensional
embedded features that can then be fed to a clustering algorithm. We will assess our methodology
on three plankton datasets with di�erent characteristics and increasing complexity.
Lastly, we will introduce and discuss di�erent methodologies to compare two or more image
datasets. We will show that each dataset can be seen as a set of points sampled by an unknown
distribution that we can estimate and analyze. As we mentioned, often a key hallmark of deep
learning models is the lack of good, labeled data. To overcome this process, di�erent research
�elds focus on transferring knowledge from related but di�erent data distributions. In this sense,
estimating such distributions can be important to provide a better comprehension of our data
and whether a set of data is suitable for transferring information to a new setting.
We will introduce di�erent methodologies to estimate image distributions such as histograms and
Random Fourier Features, coupled with various methodologies to compute distances between
them such as integral probability metrics and f-divergences. Our results will show that, even on
simple tasks involving images, the concept of dataset distance is elusive and very complicated to
quantify. In particular, two di�erent approaches will be tested providing similar results. We will
show that it is possible to obtain information on di�erent image datasets, via good partitioning,
as long as we analyze a small dataset subset.
Overall, in this thesis, we will consider a set of techniques that can alleviate machine learning com-
putational costs. In our work, we will focus on three di�erent e�ciency aspects: training time,
compressed data representation, and datasets distance. Each one of them focuses on a distinct ef-
�ciency aspect of machine learning. For all the aforementioned reasons, aiming for computational
e�ciency in machine learning tasks is necessary to reduce the greater budget required nowadays
by modern models. Reducing the cost of such models is going to be one of the greatest challenges
we will face in the future, to keep them computationally accessible to the scienti�c community.

The structure of the thesis is the following. In chapter 2 we will introduce the basic ingredients
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needed in the machine learning context. We will introduce di�erent machine learning settings,
such as supervised and unsupervised learning or predictive and descriptive models. We will pro-
vide details about the optimization process involved. In chapter 3 we will focus on the training
time e�ciency by comparing two machine learning approaches on the image classi�cation prob-
lems. In chapter 4 we will consider the representation e�ciency aspect, by considering an unsu-
pervised problem applied to plankton images. In chapter 5 we will focus on the datasets distance
problem, applied to the image context to compare two or more datasets. Lastly, in chapter 6 we
will furnish a set of �nal remarks and conclusive considerations to summarize our �ndings and
provide an overall assessment of our research.
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2 Machine learning Frameworks

In this thesis, we selected di�erent tools to analyze the bottlenecks in some common pipelines
related to our studies. In this chapter, we are going to introduce some instruments that were
adopted in all the research we performed. We start by introducing machine learning and its main
components such as tasks, performance measure and experience. We conclude by introducing
some fundamental machine learning models such as neural networks, convolutional neural net-
works and transformers.

2.1 Introduction

Machine learning is a �eld of arti�cial intelligence based on statistical techniques to give computer
systems the ability to ”learn” over a certain problem. Many books and papers provide a good
presentation of the basic machine learning concepts. In this thesis we are going to introduce them
relying mostly on two books by Tom Mitchell[194] and Peter Flach[68], respectively.

2.1.1 An intuitive definition

Di�erent de�nition were provided in the last decades. A simple and precise de�nition of the learn-
ing process was presented by Tom Mitchell in its book Machine Learning[194]:

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.

For instance in a machine learning program that learns to play chess, the performance could be
evaluated by considering the percentage of won games against another program or against a hu-
man being. In general, to have a well-posed learning problem we must de�ne three elements: a
task T, a performance measure P and the experience E.

2.1.2 Tasks

Determining precisely the task, i.e. the problem we want to solve, is essential for a good start.
Moreover, the whole development steps can be guided by the task itself. The task can be more or
less intuitive to be de�ned, depending on di�erent factors. Examples of tasks can be the following:

- In a chess learning program the task could be simply playing or winning chess games.

- In a handwriting machine learning application the task could be to recognize and classify
handwritten words.

9



2 Machine learning Frameworks

- In a medical imaging context the task could be to determine either the presence or absence
of malign tumors in the input image.

- In a driving learning problem the task could be to drive an automated vehicle on a public
four-lane highway using vision sensors.

2.1.3 Performance measure

One of the crucial aspects in the machine learning �eld is how to determine whether the program
is improving at a task. The performance P is the measure we use to evaluate such enhancement.
The used metric determines how the performance of machine learning algorithms is measured
and compared, with respect to previous and future works.

A widespread metric adopted in machine learning problems is the so-called loss. This is a gen-
eral term used to indicate functions that measure the error committed by the program. Losses are
also used during learning to guide the algorithm. In these cases, continuous functions are prefer-
able. Formally, consider a set of n input-output pairs {(xi, yi)ni=1} ⊂ X × Y where X is the
input domain and Y the output domain. We are going to call these points training samples or,
equivalently, training set. The input is generated according to an unknown distribution P and
labeled by a function F that maps the inputs to the outputs. In this sense f : X → Y .

Regression: consider a programh that learns to map the input to the output. In this sense, we
can see this program as a function such that h : X → Y . The performance of h can be measured
by computing the probability of getting a random instance x according to the unknown input
distributionD where p(x) 6= f(x).

Formally this performance measure l with l : Y × Y → [0,∞) can be expressed by the
following equation:

l(h, f)
def
= Px∼P [h(x) 6= f(x)] (2.1)

More in general, our end goal would be to predict e�ectively the output starting from input on
the whole distribution and in this sense, we can compute the expected risk:

LP (h, f)
def
= Ex∼P [l(h, f)] =

∫
X×Y

l(h, f)dP (2.2)

As we were mentioning the input points x are distributed accordingly to the unknown distri-
bution P and labeled by f . Since we do not know either P or f we need to consider only the n
points in the training set to estimate them. From this idea, we can de�ne the expected empirical
risk

L̂P (h, f)
def
=

1

n

n∑
i=1

l(h(xi), f(xi)) (2.3)

At the core of these de�nitions we have the loss function itself. Given a point xi it computes
the error measure obtained by comparing the real label f(xi) with the output obtained by our
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2.1 Introduction

program h(xi). Assuming that both f(xi) ∈ R and h(xi) ∈ R, we are considering a regression
setting, we can compute di�erent loss functions. Some common choices are:

• Square loss: this kind of loss is probably the simplest and most common in machine learning
problems. It just calculates the di�erence between the real value and the predicted output
and squares it:

ls(y, y
′) = (y − y′)2 (2.4)

where y = f(x) and y′ = h(x). The square loss function is both convex and smooth.
Moreover, this loss is simple and prevents large errors by making them costly. At the same
time in many real scenarios, we could have misleading input data for many reasons: sys-
tematic error in the instruments or in the data pre-processing. Such inputs, called outliers
are usually discarded and instead can have a deep impact when using square loss as they
contribute massively to the error computation.

• Absolute loss: this function is very similar to the previous one:

la(y, y
′) = |y − y′| (2.5)

In this situation, the loss function can be considered complementary to the square loss.
The advantage is that dealing with an outlier will not deeply in�uence the training but at
the same time when handling incorrect answers from the program they will have a limited
impact.

• ε-insensitive loss: this function de�nes a margin of tolerance where no penalty is given to
committed errors. Its de�nition is partly similar to the absolute one:

lε(y, y
′) = max(|y − y′| − ε, 0) (2.6)

In Figure 2.1 we show all the aforementioned regression loss functions.

Classification: so far we assumed that both f(xi) ∈ R and h(xi) ∈ R. As we were saying
this setting is usually known as a regression setting. A di�erent scenario we could deal with is the
classification setting. In this situation, the label of our data is not a real number anymore. It is,
instead, an instance of a categorical variable. This situation is very common and some simple ex-
amples of classi�cation problems were given in subsection 2.1.2: when dealing with handwritten
characters, selecting (i.e. classifying the character) the right character is a classi�cation problem
with a number of categories equal to the number of valid characters. When dealing with medical
images, determining the presence or the absence of a tumor is a classi�cation problem with two
categories.

Similarly to what we have seen previously, we can have an expected empirical error L̂P (h, f)
that depends on the loss function. Suppose to consider a very simple binary classi�cation problem.
From this setting we can de�ne di�erent loss functions:

11



2 Machine learning Frameworks

Figure 2.1: The regression losses as presented in Equation 2.4, Equation 2.5 and Equation 2.6
.

• 0-1 loss: this is the simplest loss function for classi�cation problems. It returns as output a
1 every time an element is misclassi�ed, and a 0 otherwise

l0−1(y, y′) =

{
1 if − yy′ ≥ 0

0 otherwise
(2.7)

• Square loss: even if it is more common in regression setting, the square loss can be rewritten
to �t the classi�cation scenarios

lsc(y, y
′) = (1− yy′)2 (2.8)

Even if we can use such a loss function for classi�cation problems this is not a very common
choice.

• Hinge loss: this kind of loss function is common and used in di�erent scenarios. One of
the most typical uses of hinge loss is for the Support Vector Machine model (SVM). This
function incorporates a margin from the classi�cation boundary into the cost itself

lh(y, y′) = max(1− yy′, 0) (2.9)

The intuition is that even if a data point is correctly classi�ed it can incur in a penalization.
Vice-versa a misclassi�ed point closer to the margin will receive a smaller penalty.

12
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Figure 2.2: The classi�cation losses as presented in Equation 2.7, Equation 2.8, Equation 2.9 and Equa-
tion 2.10

.

• Logistic loss: this function is the most important one based on probabilities. Instead of
classifying directly a probability output is given

llog(y, y
′) = log(1 + e−yy

′
) (2.10)

The intuition is: the more the probability value diverges from the real one, the higher the
logistic loss value is.

In Figure 2.2 we show all the aforementioned classi�cation loss functions.
It is quite common to exploit a di�erent metric to evaluate our model. All the classi�cation

losses we saw, aim to be minimized. Instead, we can de�ne a new metric, named accuracy as:

acc
def
= 1− 1

n

n∑
i=1

l0−1(y, y′) (2.11)

Intuitively the accuracy simply measures the percentage of data points classi�ed correctly. Ac-
curacy can be rewritten accordingly to this intuitive de�nition:

acc
def
=
c

p
(2.12)

where c is the number of correct predictions while p is the total number of predictions.
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2 Machine learning Frameworks

The relationship between loss and accuracy is peculiar because usually in a machine learning
model we can use the �rst one easier to improve our model. At the same time, the second one is
what we usually care about in real-life scenarios.

Train, validation and test sets: we saw that, given a bag of data points called a training
set, we can teach our model to improve its on a certain task. In addition to the training set, we can
introduce a validation set and a test set. To explain why, suppose we are studying for a university
test. To improve our performance, It is usually a good idea to study tests provided previously by
the teacher. In this sense, this set of tests we can study and rely on is the training set. The test
we are going to take at the end of our training phase is called test set. In real-world scenarios, the
training set can be composed of millions or even billions of samples. Also, the test set is usually
large to verify the e�ective ability of the model to generalize to unseen examples. The most impor-
tant thing about the test set is that, as the name states, it should never be used until the very �nal
test phase. Such a set of samples should be used only to assess the performance of a fully-trained
model.
Another set of data that we need to introduce is the validation set. While the test set was used
only to assess the performance on unseen data, the validation set can be used to tune the hyper-
parameters of the function we are learning. We will see in the next pages that a model can learn to
map the input to the output via a set of parameters. Such parameters can be millions or even
billions but they are learned automatically. At the same time, each model has a set of hyper-
parameters that must be set up by a human before we start the training procedure. The validation
set can be used precisely to tune this set of hyper-parameters.

When we are provided a set of data we should split them into these three sets. This way we can
learn automatically the parameters via the train set, tune the hyper-parameters manually via the
validation set and verify the model’s behavior on previously unseen samples via the test set. So
far there are no clear guidelines on how to split optimally between train validation and test sets.
Di�erent studies focus on the split ratio between train and test sets. Some works underlined that a
ratio around [70 : 30] is reasonable[54, 222]. Others works[4, 223] stated that this ratio should be
between [75 : 25] and [50 : 50]. Moreover, di�erent works[150] stated via an asymptotic study
that the ratio should tend to [0 : 100] when the dataset size increases.

2.1.4 Experience

According to the English Oxford Dictionary:

Ex·pe·ri·ence [Ik"spI@.ri.@ns], noun: the knowledge and skill that you have gained
through doing something for a period of time.

in this sense, the "knowledge and skill" collected by the program is very similar to one accu-
mulated by a human being. Usually, the source of experience corresponds to the data used to
train the system and can have a signi�cant impact on the results over the task. The source of data
can be direct or undirect. For instance, in a machine learning program about chess, a direct form
of experience could be chess board con�gurations associated with the best move to do for each
con�guration. An undirect form of experience could be a sequence of moves made by a human
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player. Of course, this second approach presents an additional problem about "how good" the
moves are by considering the �nal result of the match. Considering that the experience is directly
tied to the input data is important to consider in advance the kind of input as it is going to in-
�uence deeply the model used to solve the task. One common distinction is between labeled and
unlabeled training data:

• Labeled data: in this situation, the data are given with their "real" label. For a regression
problem this could be the value of the y ∈ Y variable. Instead, in a classi�cation setting
could be the class the x ∈ X belongs to. This kind of information can be used to guide
our program to produce better outcomes ŷ.

• Unlabeled data: in this situation, we have data that has not been annotated by human ex-
perts. In practice, we are removing the importantY information.

Such separation between labeled and unlabeld data marks a distinction between two categories
of learning problems: supervised and unsupervised, respectively.
Usually, the knowledge is accumulated by the program over a period of time. In this sense, there
are di�erent quantities that measure the time spent by a program to learn about a task. Di�erent
types of programs rely on di�erent "time" quantities:

• Epochs: when the program analyzes the entire available set of data and updates its param-
eters accordingly.

• Steps: usually, with the modern dataset increasing in size, it is not possible nor suitable to
update the program’s parameter at the end of the epoch. Commonly the set of data is split
in batches and the program updates its parameter after analyzing a single batch. So we can
see an epoch as a sequence of steps.

2.2 Model

So far we referred to the function that determines what type of knowledge will be learned as a
program. This kind of function h, as de�ned in subsection 2.1.3 maps the elements from the
input spaceX to the output spaceY as:

h : X → Y (2.13)

From now on we are going to refer to this function as the model. Usually, the model func-
tion needs a mathematical representation related to the relevant information about the problem.
These pieces of information are called features and they are usually indicated as x1, . . . , xn.
Once we determined the features, a very simple mathematical representation of the target func-
tion could be:

ĥ(x) = w0 + w1x1 + . . .+ wnxn (2.14)

wherew0, . . . , wn is a set of weights that the model must determine.
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So far in this section, we provided a general de�nition of the model as a target function, map-
ping the input space to the output space. There are numerous ways to provide a more �ne-grained
de�nition. A common one consists in dividing models into two categories:

• Supervised: the model is presented with example inputs and their desired outputs. The
goal is to learn a general function Φ that maps inputs to outputs. These outputs, usually
called labels are used to "teach" the program the correct answers for every training example.
Without noticing this is what we did in the whole subsection 2.1.3. In this context we
have a set of input-output pairs {(xi, yi)ni=1} ⊂ X × Y . The needed ingredients of the
supervised setting are:

– The set of input-output pairs
– The model itself, mapping the input to the outputs: h : X → Y
– A loss function L(h, f) chosen between the ones presented in subsection 2.1.3, de-

pending on the nature of the problem itself, e.g. regression or classi�cation.
With these elements, the supervised learning task can be de�ned and solved as an optimiza-
tion problem such that:

min
h:X→Y

L(h, f) (2.15)

• Unsupervised: the model is presented with example inputs without their real labels. The
goal is to �nd relations within the data that help to understand better the data. This is
done by inferring the properties of the data probability distribution without the help of
the labels.
In this context, we would like our model to learn a good representation of the input data.
In this sense we want to learn a general function Φ as:

Φ : X → F (2.16)

whereF is the feature space we want to learn.

Aside from these two precise categories, di�erent research �eld about "intermediate" situations
has been explored. For instance, is possible to �nd in literature other terms such as weakly su-
pervised learning[316, 324] and its subset semi-supervised learning[36, 291]. Another di�erent ap-
proach is the one proposed by self-supervised learning[119, 169]. A distinct modern categorization
between machine learning models is between predictive and descriptive models. As presented by
Peter Flach[68]:

• Predictive model: this type of model try to predict the value of a variable. Usually, a pre-
dictive model uses statistical techniques and forecast methodologies to give a prediction.

• Descriptive model: this group of models wants to understand something about the data
without doing any prediction. Usually, a descriptive model uses data aggregation and data
mining to provide insights and give an explanation to data.

By considering the two aforementioned categorizations (supervised versus unsupervised and pre-
dictive versus descriptive) we can compile Table 2.1 where an overview of di�erent machine learn-
ing settings is given along with examples from every setting.
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Predictive model Descriptive model
Supervised classi�cation, regression subgroup discovery

Unsupervised predictive clustering association rule discovery

Table 2.1: Overview of di�erent machine learning settings

One last distinction we can underline about machine learning models is related to the task a
machine learning program wants to solve. By taking a second look at Table 2.1 we can notice
that machine learning models solve a large variety of problems: classi�cation, subgroup discovery,
predictive clustering. . .Yet another way to look at machine learning, concerns the kind of models
it is able to build, most of the models can be classi�ed as it follows:

• Geometric: a model that aims to collect information about data in a geometric space like
Rn. The aim of the model is to infer some geometric properties regarding the data. This
group of models can be divided into two subgroups: linear models and distance based mod-
els.

– Linear: this group of models operates directly in space and is based on geometrical
entities like lines or planes, and, most commonly, hyper-planes. Usually, these mod-
els try to separate A very simple example of a linear model is the one presented in
Equation 2.14. By setting:

ĥ(x) = 0

we are essentially de�ning an hyper-plane in the Rn+1 space.
This kind of model is widely used because, even with its simplicity, can represent some
real-world scenarios. Di�erent models belong to this category, for instance, support
vector machines, and least-square methods.

– Distance based: in machine learning a useful concept is the one of distance. When
two instances coming from the same dataset are close in their features space, they
could be similar and this is inherently tied to how the space is de�ned in terms of
the features. In the cartesian space, it can be useful to measure the distance between

two points x and x′ in terms of the euclidean distance
√∑d

i=1(xi − x′i)2 where d
is the space dimensionality. We will also see that the euclidean distance is not always
suitable for every feature space. Di�erent types of distance can be used e.g. cosine
distance, Mahalanobis distance, and city-block distance.

• Probabilistic: a model that is probabilistic in nature, considering that randomness plays a
role in predicting future events. The main idea here is to use the grounding of probability
theory to make inferences about a given variable, given the data at hand. In this sense, when
some x ∈ X is given we would like to predict the outcome, i.e. the y ∈ Y . For this reason,
probabilistic models focus mainly on theP (Y |X) relation. Commonly this probability is
studied by using the Bayes rule:
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P (Y |X) =
P (X|Y )P (Y )

P (X)
(2.17)

With Bayes rule we can compute the maximum posterior probability

Y = arg max
Y

P (Y |X) = arg max
Y

P (X|Y )P (Y )

P (X)
∝ arg max

Y
P (X|Y )P (Y )

(2.18)
Some examples of probabilistic models could be the naive Bayes model, the Bayes model,
the logistic regression model, and Hidden Markov Model.

• Logical: these types of models are called logical because they can be easily translated into a
set of rules easily understandable by humans. The set of rules can be also organized as a tree
called feature tree. The intuition behind this approach is to partition the instance space by
applying part of the rule included in the set. By doing so the instance space is divided into
a set of hyper-rectangles with decision boundaries corresponding to the edges of the hyper-
rectangles. Some instances of logical models are ordered/unordered rule sets and decision
trees.

2.3 Kernel methods

As we have seen in the previous section, machine learning models can be studied from di�erent
perspectives. Machine learning models can address di�erent questions, depending on their pur-
pose and their aim. In this section we are going to provide details about kernel methods.
We have seen that in the geometric models family, the linear models operates directly in the input
space. Despite of their simplicity, they are widespreaded as can be easily interpretable and can de-
scribe many real-world scenarios. Usually, if we want to deal with a classi�cation problem via a
linear model, we would like to separate the input in a meaningful way. Such situation is usually
interpreted by a Support Vector Machine, aiming to separate the input and maximizing the margin
between di�erent classes.
We have seen previously that, training a linear support vector classi�er involves an optimization
procedure. The goal is to maximize the margin, which is the distance between the closest pair of
data points belonging to opposite classes. These data points are known as support vectors, as they
determine the decision boundary. In order to train the support vector classi�er, we must identify
the hyperplane with the maximal margin or optimal separating hyperplane, which e�ectively sep-
arates the classes and allows us to generalize to new data and make accurate predictions.
When the data cannot be separated linearly in their original space, we can transform them using
mappings φ(x) into a feature space with a higher dimension, aiming to achieve linear separability
between the classes in the new space. By �tting a decision boundary in this higher dimensional
feature space, we can separate the classes and make predictions. While there are di�erent transfor-
mations that can produce data linearly separable in higher dimensions, not all of these functions
qualify as kernels. The kernel function possesses a unique property that makes it highly advanta-
geous for training support vector models. The technique of exploiting this property to optimize
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non-linear support vector classi�ers is commonly known as the kernel trick.
The kernel trick involves representing the data through a series of pairwise similarity comparisons
between original data observations x, which retain their original coordinates in the lower dimen-
sional space. This approach avoids the explicit application of transformations φ(x) and repre-
sentation of the data using the transformed coordinates in the higher dimensional feature space.
Formally, given two data samples x, x′ ∈ X and a map φ : X 7→ Rn, we can de�ne a kernel
function as

k(x, x′) = 〈φ(x), φ(x′)〉 (2.19)

The kernel trick’s main advantage is that the objective function we optimize to �t the higher
dimensional decision boundary involves solely the dot product of the transformed feature vectors.
This allows us to easily substitute these dot product terms with the kernel function, eliminating
the need for the φ(x) transformation.
Now we provide details on the kernel trick. In Equation 2.14 we presented a very simple model
called linear model. We can describe it in a more compact way ashW (x) =

∑d
j=1wjxj = W>x.

Previously in this chapter we have seen also a set of possible performance measures, introducing
the square loss in Equation 2.4. Usually when dealing with a loss function for real-world scenario
we need another term called regularization term, preventing the model to �t perfectly the training
data. In section 2.7 we will provide all the necessary details on this subject. The regularized version
of the square loss can be rewritten as

l(X, y,W, λ) =
n∑
i=1

(yi −W>xi)2 + λ
d∑
j=1

W 2
j (2.20)

where λmust be set a-priori, determining the importance of the regularization term. The cur-
rent framework provides us a closed-form solution for the parametersW as

W = (X>X + λI)−1X>y (2.21)

As we were descrbing, we can introduce a non-linear feature mapφ(x) and apply it to the input
X , obtaining:

hW (x) = W>φ(X) (2.22)

we can notice that by using a non-linear function φ the resulting model is non-linear in the
inputX but is it still linear inW . We can express the φ transformation in terms of the associated
matrix Φ:

Φ =


φ(x11) . . . φ(x1p)
φ(x21) . . . φ(x2p)

...
...

φ(xn1) . . . φ(xnp)

. (2.23)

By introducing Φ matrix we can provide a closed form solution to obtain the best parameters
with the new attributes as
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W = (Φ>Φ + λI)−1Φ>y. (2.24)

showing that we can obtain a solution for the optimal parameters also when our input are trans-
formed via φ. We can notice that �nding the optimal solution cost usO(p3) as we have to invert
the Φ>Φ matrix. Via the push-through matrix identity equation we can rewrite our problem in
the following way, usually called the dual form

W = Φ>(ΦΦ> + λI)−1y (2.25)

We can notice that �nding the optimal solution cost usO(n3) as we have to invert the Φ>Φ
matrix. Solving this equivalent problem can be preferable whether p > n.
Another even more important observation is about the dual form we just introduced. We can
notice that the output of (ΦΦ> + λI)−1y is a vector composed by n positions. We are going to
refer to such vector, as α

W = Φ>α (2.26)

Indeed, by also noticing that αi =
∑p

j=1 Lijyj where L = (ΦΦ> + λI)−1, we can rewrite
the optimal solution of the n training points as

W =
n∑
i=1

αiφ(xi) (2.27)

This is a very important observation as once we receive a new input x′ if we want to compute
a prediction about it we can apply the optimal weights expressed by Equation 2.27 to it:

φ(x′)>W =
n∑
i=1

αiφ(x′)>φ(xi) (2.28)

stating that the model prediction according to the computed set of weightsW is a linear com-
bination of φ(x′), our new input after we applied the φ transformation to it, and the featurized
version of every other transformed training examples φ(xi) weighted by the corresponding value
αi.
The crucial observation here is that to determine the prediction of a new input we do not need
the transformation of the inputs φ(xi) or φ(x′) if we know directly their dot product. This is
the key idea behind the kernel trick we introduced in Equation 2.19. It is worth noticing that we
just need the dot product between φ(xi) and φ(x′) even at training time. Indeed, by recalling
that each row i of Φ is the i-th featurized input φ(xi)

>, we can de�ne a matrixK = ΦΦ> as the
matrix of all dot products between all the φ(xi) where

Kij = φ(xi)
>φ(xj). (2.29)

Now, by recalling and updating the de�nition ofα = (K+λI)−1y we can notice that also in
this de�nition we only haveK where we only have the dot productφ(xi)

>φ(xj) directly. Indeed,
we can notice that at training time we just need to compute the K matrix usually referred to as
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Kernel name Product result
Polynomial (x>x′ + c)d

Sigmoid tanh(γx>x′ + c)

Gaussian exp(−||x−x
′||2

σ2 )
Laplacian exp(−γ||x− x′||1)

χ2 exp(−γ
∑

i
(xi−x′i)2
xi+x′i

)

Table 2.2: Di�erent types of kernel

kernel matrix. Then, we can plug values ofK in theα vector that can be used later at test time to
predict outcome of unseen samples. The main advantage about the kernel trick is that with some
speci�c function, computing the productφ(xi)

>φ(xj) is equivalent to another formulation that
is cheaper to compute. We can show some examples of well-known kernels in Table 2.2

2.4 Neural networks

A very popular model family in machine learning is artificial neural networks. These models are
vaguely inspired by the biological neural networks that constitute animal brains.
Neural networks were introduced for the �rst time in 1943 by McCulloch and Pitts[186]. After
many modi�cations and improvements[193, 245], neural networks are used nowadays to solve spe-
ci�c tasks, both in a supervised and unsupervised way.
By now, neural networks have been used in a large variety of �elds for over thirty years[8, 226].
Some applications are: handwritten character recognition[152, 171], speech recognition[52, 148,
200] and object detection of images[117, 168, 320], for instance faces recognition[69, 183, 300] or
object classi�cation[143, 278].

A neural network is made by neurons, a generalization of perceptrons. In the simplest neural net-
work model a neuron computes a function called transfer function and checks through an activa-
tion function whether the output of the transfer function is greater than a certain threshold. If so,
the neurons "�res" providing a continuous value as output. The neuron model structure is shown
in Figure 2.3.
Usually the transfer function computes the following quantity:

n∑
i=0

wixi + t = w0 + w1x1 + w2x2 + . . .+ wnxn + t (2.30)

The activation function checks whether the neurons must activate by verifying a logical condition.
As we were saying this condition could be, for example, that the output is greater than a certain
value. In that case the activation function is called step function.
We can have di�erent activation function types. We can show below some of them:
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Figure 2.3: Arti�cial neuron model

• Step function:

φ(v) =

{
a, when v < 0

b, when v > 0
(2.31)

In its most simple version, the activation function can �re a value bwhen the input is greater
than 0. Mathematically, the step function can be written as a �nite linear combination
of indicator functions of intervals. A simple example of a step function is the sign func-
tion sgn(x), assuming−1 for negative numbers and +1 for positive numbers. The most
biologically-intuitive interpretation is the one where the output of the step function is 1
when the neuron "�res" and 0 otherwise, meaning a turned-o� neuron. To such a special
scenario is granted the name Heaviside step function. It is equivalent to the sign function,
up to a shift and scale of range. Indeed,H(v) = (sgn(v) + 1)/2.

• Logistic sigmoid function:

φ(v) =
1

1 + e−v
(2.32)

the sigmoid function is bounded, monotonic, and di�erentiable, de�ned for all real input
values with a non-negative derivative on the whole real interval. Moreover, the output of
the logistic sigmoid function is bounded between 0 and 1 and for this reason, it is often
used in the neural network �eld to predict the probability as output.

• Gaussian function:
φ(v) =

1

σ
√

2π
e−

1
2

( v−µ
σ

)2 (2.33)

The Gaussian function is an alternative to the previous activation functions. Di�erentiable
and easy to approximate to φ(v) = e−v

2 . In the neural network �eld, it is used when
dealing with image processing, where two-dimensional Gaussians are used for Gaussian
blurs.

22



2.4 Neural networks

• Recti�ed linear unit function(ReLU):

φ(v) =

{
0, when v < 0

v, when v ≥ 0
(2.34)

A general problem with some of the previous functions is saturation. For instance, the
sigmoid function with large values tends to 1 while tending to 0 for small values as input.
Further, some functions are only really sensitive to changes around their mid-point. To
address this problem another activation function called Recti�ed Linear Unit is proposed.
Nowadays, especially in deep networks, this function and its alterations are the most used
ones to compute the output of a neuron. This function family was selected as de facto
standard because of some advantages. First, they are easy and fast to compute. Moreover,
they provide a sparse representation, being able to produce a real zero as output. Lastly, it
is mostly linear and easier to optimize.

• Gaussian error linear unit(Gelu):

φ(v) = vϕ(v) (2.35)

where ϕ(v) is the cumulative distribution function of a gaussian distribution with µ = 0
and σ = 1. Originally proposed to merge dropout functionality with ReLU activation
function. An intuitive way to interpret the Gelu activation function is by noticing that for
negative values the function tends to 0 as the cumulative function is closer to 0. At the
same time for positive values the Gelu function tends to the identity as the cumulative is
closer to 1. In practical scenarios, the Gelu function is often approximated as

φ(v) =
v

2
tanh

(√
2

π
(v + 0.045v3)

)
(2.36)

Such approximation is faster to compute and does not rely on the cumulative distribution
tables associated with the gaussian distribution function.

We can show all the aforementioned activation functions in Figure 2.4.
Once we decide which activation function to use, we can build the "real" neural network by

constructing a layer of the network that is made by a certain number of neurons. By considering
a basic version of a neural network as the one we introduced so far, we can show it in Figure 2.5.
Clearly, in real-world scenarios, networks are made by more than one layer, processing the infor-
mation one layer after another. Formally, a neural model can be de�ned as:

f(x) = WΦ(x) (2.37)

that is, forW = (w1, . . . , wT ),

f t(x) =
〈
wt,Φ(x)

〉
(2.38)
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Figure 2.4: Common activation functions in neural networks �eld.

where the Φ is obtained composingL representations of the input

z ∈ Ru`−1 7→ Φ(x) = ΦL ◦ ΦL−1 ◦ . . . ◦ Φ1(x) ∈ Ru` , (2.39)

where u` is the number of hidden units in the `-th layer (with u0 = d) .
Each map Φ` corresponds to the `-th layer and is further parameterized.
Fully connected layers are of the form

Φ`(z) = σ(B`z + b`) = (σ(〈z,B1
` 〉+ b`), . . . , σ(〈z,Bu`

` 〉+ bu`` )) (2.40)

where B` is a u`−1 times u` matrix with rows B1
` , . . . , B

u`
` , and σ is a component-wise non

linearity, e.g. σ(a) = ReLU(a) = max{0, a} for a ∈ R.

Another important part of the neural model, providing some interpretability to the problem
is the softmax component. Such part of the network it is usually used at the end of the network.
It implements the softmax function that, given a vector z with length i, is de�ned as

σ(z)i =
ezi∑k
j=1 e

zj
. (2.41)

The softmax layer has two purposes. The �rst one is to normalize the results coming from the
network. Indeed the output of the layer before the softmax one is going to be a set of numbers
related to the activation level of the previous neurons: the greater the value, the more the neuron
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Figure 2.5: An example of neural network

activeness. In this sense, the softmax output is instead a normalized version of the previous layer
output summing up to one. Similarly to probability distributions, this aspect provides the user a
slight form of interpretability as we can see every neuron �ring proportionally to how probable
is to activate it. In particular, when the softmax layer is used in classi�cation contexts, in the last
layer we have a neuron for each class. When coupled with the softmax layer we have precisely the
probability for each class associated with each neuron. The second interesting aspect is related to
the previous one and is that softmax is a smoothed version of the argmax function. It is worth
noticing that all the nodes in a single layer are linked with all the nodes of the next layer. These
types of neural networks are called fully connected networks. In another context, a neural network
node could be linked with just part of the neurons of the next layer. These other type of networks
are called sparse neural networks.

The main reason neural networks have always been popular, particularly in the last two decades,
is because they are able to learn how to solve a speci�c complex problem.
But how a neural network can learn?
To understand it we must reconsider what we said previously. In a supervised context, the neural
network tries to learn the parameters of a function h as de�ned in Equation 2.13 that maps the
input to the output. The key idea is that, while the network is learning, every time produces an
output we can verify it by comparing it with its "true" output.
By comparing the label produced by the network with the real label we can tell how good was
the network prediction. To have a mathematical de�nition of "good" we need to refer to a cost
function l as de�ned previously in Equation 2.3. Ideally, we would like to set the parameters of
the network to minimize the value of the cost function. In other words, given n parameters we
would like to �nd the optimal point of Rn that minimize the cost given by l.
Once we obtain a value from the cost function l we would like to know how to change the pa-
rameters of h in order to reduce the value of l.
Di�erent methods have been proposed in the last century to deal with this matter. Indeed, this is
a very general problem called optimization problem[116, 149] where we try to minimize a speci�c
function. The most popular method used nowadays is the gradient descent[157] technique and
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its variations.
In the simplest model we can think of, the perceptron weights update rule should be:

~w′ = ~w + ∆~w (2.42)

where:
∆~w = −η∇h(~w), (2.43)

where η is a positive constant called learning rate which determines the size of the step in the
gradient descent search. The value of∇h(~w) is the following:

∇h(~w)
def
=

[
∂h

∂w0
,
∂h

∂w1
, . . . ,

∂h

∂wn

]
. (2.44)

As we can see, to use the gradient descent technique, the cost function h must be di�erentiable.
Moreover, its output must depend only on the neural network output. By having a di�erentiable
cost function we can determine the right way to change the weights to obtain a performance im-
provement.
The gradient descent technique is widely used in many machine-learning models. It is usually
combined with the backpropagation algorithm[81, 242, 247], a typical technique that computes
how the weights of the network should be changed and how to propagate backward these up-
dates in order to get an improvement. When the gradient descent technique is combined with the
backpropagation algorithm they are considered the standard technique to train a neural network.
In modern architectures, a di�erent version of gradient descent is used, called Mini-Batch Gra-
dient Descent[98, 130]. Usually, with the modern dataset increasing in size, it is not possible nor
suitable to update the program’s parameter via the gradient descent technique. This is mostly
related to the impossibility of loading an entire dataset inside a modern GPU’s VRAM. The solu-
tion is to consider a small portion of the dataset called batches. Given a single batch, we perform
a forward pass through the network and compute the corresponding loss. Then we compute the
gradient for this small amount of samples and run the backpropagation algorithm. This approach
has di�erent bene�ts:

- Feasibility: even if we have to compute the backpropagation algorithm for every batch, it is
now possible to �t one or more batches in the GPU’s memory.

- Regularization: in section 2.7 we will see that a machine learning training process can be
problematic when the model starts to �t the noise in the samples we have. Computing the
gradient for the whole dataset provides the right direction to move considering also such
noise. Instead, with the stochastic gradient descent we are computing an approximation of
the gradient, reducing the probability of getting stuck in local minima.

An important aspect of mini-batch gradient descent is the batch size itself. It is natural to ask
ourselves what is a su�cient small batch size. There is no precise answer to this question as stated
in di�erent works[128, 160]. In modern architectures, this value can vary between a few to hun-
dreds of samples. Nonetheless, due to all the aforementioned reasons, we know that training time
per epoch and until convergence increases as the batch size increases. At the same time, the re-
sulting model quality usually gets worse as we enlarge the batch size. An extreme scenario is one
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where we compute the gradient and update the weights after every sample. This technique is usu-
ally referred to as Stochastic Gradient Descent(SGD)[11, 27, 241].

Even if we cannot focus on optimization algorithms it is worth noticing that many of them have
been proposed. Their usage is related to the available information about the problem solved via the
function to optimize. An important piece of information is whether the objective function can be
di�erentiated. In this sense we can consider the set of �rst-order optimization algorithms, based
on using the �rst derivative, corresponding to the gradient computed in Equation 2.44 to move
in the parameters space. To this category belong: gradient descent[241], momentum gradient de-
scent[229, 276], AdaGrad[61, 175], RMSProp[98, 285] and Adam[115, 133]. Di�erent approaches
can be used, such as exploiting the second-order derivative in second-order algorithms, or brack-
eting algorithms where we know that the optima belongs within a speci�c range. Choosing an
optimization algorithm is fundamental to solving a speci�c task. It determines how we are going
to update the parameters of the function h, providing a di�erent solution that depends on the
algorithm and its parameters.

So far we have seen that if we consider a set of layers each one made by a certain number of neu-
rons, the model is able to learn with respect to a certain metric and get better performances. We
have seen that such improvement is accomplished by automatically updating the model’s param-
eters. What we did not talk about is how to set up the network itself. Indeed some aspects of the
model must be de�ned apriori. The needed amount of layers and the number of neurons per layer
are fundamental to determining the function complexity a model can learn about. Moreover, the
weights initialization that can be uniform or random can in�uence the training process while the
activation function determines di�erent values that are passed to the backpropagation algorithm.
Also, the learning rate determines the step size in the optimization algorithm and is fundamental
in the parameters update procedure. This is a well-known problem called hyper-parameters tun-
ing. In subsection 2.1.3 we saw that a dedicated part of the data, called validation set is used to
tune the hyper-parameters.
In general, we do not have a precise rule to set such hyper-parameters before the training begins.
We usually have rule-of-thumb indications about how to initialize and adjust them subsequently.
However, a good way to characterize these aspects is through the concept of capacity[16, 48]. As
stated in previous works[81]:

Informally, a model’s capacity is its ability to �t a wide variety of functions.

Usually, it is used to describe the complexity of a model. In statistical learning theory, we can
�nd various ways to quantify precisely the capacity of a model. A famous one is the Vapnik-
Chervonenkis dimension[26, 295], measuring the capacity of a binary classi�er. Intuitively the VC-
dimension measures the largest possible value e such that a set of e training points can be labeled
arbitrarily by the model. Some important results in statistical learning theory[26, 293, 294] show
that a classi�er error is bounded from above by a quantity that grows with the model capacity and
decreases with an increasing amount of training samples.
With such considerations in mind, we can understand how the above-described hyper-parameters
in�uence the model’s capacity:
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• Layers number: as we increase the number of layers involved in the process, we are increas-
ing the amount of trainable parameters involved in the training process. Therefore, we are
increasing the capacity.

• Nodes number: as we increase the number of nodes involved in a layer, we are increasing
the amount of trainable parameters involved in the training process. Therefore, we are in-
creasing the capacity.

We can summarize the above information about the relationship between hyper-parameters
and the model complexity in Table 2.3

Hyper-parameter Increases capacity when
#Layers Increased
#Nodes Increased

Table 2.3: Relation between di�erent hyper-parameters and capacity

2.5 Convolutional Neural Networks

In the previous section, we introduced a tool that can be used to deal with data by learning the
parameters of a transfer function and an activation function. In this section we are going to show
a specialized version of a neural network called convolutional neural network(CNN)[6, 84, 153,
162]. Historically, the earliest precursor of the Convolutional Neural Network was the Neocog-
nitron[75]. Was introduced in 1982 along with some fundamental concepts that we are going to
show in the next few pages such as shared connections and pooling. In the 90s LeNet[154] was
introduced for handwritten digit recognition tasks. It was probably the �rst convolutional archi-
tecture as we know them nowadays. The convolutional approach e�ectiveness was �nally proven
in 2012[144] by winning one of the most important competitions in the world about image clas-
si�cation, the ImageNet large scale visual recognition challenge(ILSVRC).
Nowadays this kind of network is mainly used for visual input and has a grid-like topology. The
main di�erence with the neural network showed previously is that convolutional neural networks
replace the general matrix multiplication with a convolution operation[58, 62, 82] in one of the
network layers. Such a model is biologically inspired by the visual cortex[166, 231] that does not
focus on the whole image. Instead, when we look at our surroundings, we focus on a small por-
tion centered around our pupils. In the last decade, they have been exploited in many di�erent
applied �elds such as image recognition[95, 237, 288], video recognition[73, 123, 224], medical im-
ages[14, 279, 309], recommendation systems[2, 264, 313], image segmentation[15, 190, 273], natural
language processing[106, 301]. In all these �elds they turned out to be extremely e�ective.

We can brie�y focus on the mathematical convolution operation. In its most general formula-
tion, convolution is an operation on two functions f and g of real values. Intuitively it expresses
how the shape of one is modi�ed by the other. It is usually denoted by the symbol ∗ as f ∗ g. It is
de�ned as the integral of the product of the two functions after one is re�ected on the y-axis and
shifted. Formally
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(f ∗ g)(t)
def
=

∫ ∞
−∞

f(τ)g(t− τ)dτ, (2.45)

where t is the amount we shifted our function f . The convolution operation is commutative
and the above equation can be rewritten as

(f ∗ g)(t) =

∫ ∞
−∞

f(t− τ)g(τ)dτ (2.46)

meaning that the choice of which function is re�ected and shifted before the integral does not
change the integral result. Intuitively we are sliding the function g(t−τ) over the function f(τ).
Indeed, we can consider the two functions f(τ) and g(τ), re�ect the function g(τ) on the y-
axis, obtaining g(−τ). Then we can add the o�set t and let it start at−∞, sliding all the way to
+∞. Wherever the two functions intersect, �nd the integral of their product. In other words, at
value t, we can compute the area under the function f(τ) weighted by g(t− τ) In the following,
where we work with images, we are going to use the discrete version of the convolution operation,
de�ned as

(f ∗ g)(t) =

∞∑
τ=−∞

f(τ)g(t− τ) (2.47)

We saw previously that we are letting the function g slide over the function f . In this sense,
when we are dealing with images we are sliding a matrix made by learnable parameters over the
input image, computing a point-wise product.

In the previous section, we saw that a neural network can be trained, given a set of input-output
pairs. In this sense, an image that is made of pixels with its own value can be considered as a vector
of input values. This fact underlines that we could just re-shape our input from a two-dimensional
matrix, i.e. the image, to a new kind of input that is simply a one-dimensional vector obtained by
concatenating all the rows of the original matrix. This new kind of input could be given to a
neural network as showed in the previous section, without the need of introducing a new model
like the convolutional one. Such an approach can work with very small and simple images. It
can be easily tested that a simple feed-forward fully connected neural network is able to obtain
very good results when dealing with simple problems like hand-written character recognition. for
instance when working with the MNIST[155] dataset. However, this is explained by two simple
shreds of evidence:

- Small image size: the dataset content is made by 28 × 28 pixel images. The image size
plays an important role in the computational cost of the training process. As images are
organized as bidimensional matrices, when dealing with the larger size the computational
cost scales quadratically.

- Dataset simpleness: the image content for the MNIST dataset is very simple. Every image
contains a hand-written digit and the model must classify between the ten di�erent digits.
Moreover, because of their simplicity, images do not present complex spatial dependencies
and they are composed of simple shapes. We show a sample for every digit in Figure 2.6.

29



2 Machine learning Frameworks

Figure 2.6: Digits samples from the MNIST dataset

More in general, when dealing with a larger input both in terms of image size and data amount,
it is nearly impossible to treat e�ciently such a volume of data with classical neural networks. With
convolutional neural networks, the aim is to reduce drastically the amount of parameters involved.
they are mostly based on the shared-weight architecture of the convolution kernels.
A convolutional neural network is made of di�erent layers, and part of them are made by compo-
nents we saw previously, like the activation function. In the following, we are going to introduce
the parts that make the convolutional model more e�cient w.r.t. a classical neural network.

Convolutional filter: also referred to as convolutional kernel, it is de�ned by a set of learn-
able weights arranged in a matrix form. The �lter is usually smaller than the input size and it con-
volves, i.e. shifts, over the input image. At every step of the discrete convolution, we perform a
Hadamard product[104, 191] between the �lter and the input at the current location. After the
product is computed we can shift the �lter over the image to the next position. The amount of pix-
els we shift before computing a new Hadamard product is usually referred to as stride. Formally,
given a matrix K with shape (n,m) where n,m ∈ N, and a stride s = 1, the bi-dimensional
discrete convolution outputO given by the Hadamard product with the input image I is de�ned
as:

O[a, b] =
n∑
i=1

m∑
j=1

K[i, j]I[a− i, b− j] (2.48)

where a and b are the output number of rows and columns, respectively. As we were mention-
ing, theK size is usually smaller than the input size. Typical values for kernel size are n = 3 and
m = 3. Similar values can be also used. We can show in Figure 2.7 a graphical explanation of a
3× 3 kernel convolving over a 4× 4 image, resulting in a 2× 2 output.

Usually, the convolution kernel is coupled with an activation function like the ones described
in the previous pages. One thing that is worth noticing is that the size of the output is smaller w.r.t.
the input image. We can already guess that by iterating such a process the information amount
involved is going to decrease along the network’s subsequent layers.
As in fully-connected neural networks, the convolutional ones are usually made by the compo-
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Figure 2.7: A 3× 3 kernel convolving over a 4× 4 image.

sition of subsequent features map based on linear and non-linear operations, where the linear
operations are now convolutions:

Φ`(z) = (σ(B1
` ? z), . . . , σ(Bul

` ? z)) (2.49)

and the nonlinear operations include pooling, for instance max pooling, where if a ∈ Ru` , we
have

σ(a) = max{ReLU(a1), . . . ,ReLU(aul)}. (2.50)

In a typical architecture for image classi�cation, a number of convolutional layers are followed
by fully connected layers,

Φ(x) = ΦL ◦ ΦL−1 ◦ . . .ΦC+1︸ ︷︷ ︸
Fully connected layers

◦ΦC ◦ . . . ◦ Φ1(x)︸ ︷︷ ︸
Convolutional layers

. (2.51)

As we already seen in the previous section, an important concern about the practical usage of con-
volutional neural networks is related to the hyperparameters of the model. While the parameters
of the convolutional model are learnable, some more general features of the network must be de-
�ned apriori. One hyper-parameter is the kernel sizeK . We said previously that a common value
for the size of the �lter n,m is 3. However, we could choose among a plethora of di�erent values
as long as they are smaller than the input size. Something similar can be said for the amount of �l-
ters used in every layer or the number of layers involved in the model. At the same time, even if we
did not focus on the stride, it is another hyper-parameter that can in�uence the learning process.

• Filter size: as we increase the �lter size in the nodes, we are increasing the area where the
�lter is looking for visual dependencies. Taking into account a larger portion of the image
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increases the ability of the model to �nd such dependencies. Therefore, it increases the
capacity.

• Stride: as we increase the stride of the model, we are shifting "faster" on the input image.
Such operation force the model to perform a lower number of analysis step on the input
image. Therefore it decreases the capacity.

Again we can summarize the above information about the relationship between hyper-parameters
and the model complexity in Table 2.4

Hyper-parameter Increases capacity when
Filter size Increased

Stride Decreased

Table 2.4: Relation between di�erent hyper-parameters and capacity

Poolingnode: the second component that reduces massively the number of trainable param-
eters involved in the learning process is the pooling node[79, 144, 323]. It is not made by parameters
that we can learn during the training process, but simply reduces the dimension of data by com-
bining small square clusters into one value. A hyperparameter involved in the process is the tile
dimension to analyze. Formally, given ts ∈ N and an input with size d1, d2 ∈ N the pooling
node divide its input into (dd1ts e, d

d2
ts
e) tiles, computing an output for each of them. The output

value can be produced in two di�erent ways depending on the pooling type we use:

• Max pooling: given a tile T of dimension (ts, ts) the max pooling operation is computed
as

pmax(T ) = max(T ) (2.52)

selecting the maximum value in the tile as node output.

• Average pooling: given a tile T of dimension (ts, ts) the average pooling operation is com-
puted as

pavg =
1

t2s

ts∑
i=1

ts∑
j=1

Tij (2.53)

selecting as node output the average value between the ones included in the tile.

We show these two approaches in Figure 2.8. Using a pooling node presents at least two main
advantages. First, as we were mentioning, the input size decreases drastically. Even with the mini-
mum pooling tile size, i.e. 2, every time the input passes through a pooling node its dimension is
decreased by 4 times. Even if the typical size for the pooling tile size is precisely 2, with a larger value
the reduction could be even greater. The second important advantage of pooling is the increase
in the model invariance to small perturbations. Both max pooling and average pooling provide
similar outputs when the input change slightly. That makes the model more robust to small per-
turbations in the data.
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Figure 2.8: Max pooling and average pooling examples.

Similarly to previous considerations, also the pooling node involves hyper-parameters that must
be set before the training, such as the tile dimension and the pooling type. As we were mention-
ing, the tile size is usually ts = 2. On the pooling type the most common choice is the use of max
pooling that is more perturbation resistant w.r.t. the average pooling node.
Di�erent studies in the last few years tried to propose strategies and improvements to the pooling
node[42, 274] and its role inside the neural model[253, 314].

2.6 Transformers

In the previous section, we introduced a popular deep learning model, named Convolutional
Neural Networks, that have been the most common tool to deal with images in the last decade.
Their success has been proven in various scenarios, outperforming previous approaches. Many
variations and modi�cations have been proposed and a new methodology is emerging as state-of-
the-art. Even if we are going to analyze the transformers for the computer vision context, histori-
cally they have been strongly tied to the Natural Language Processing(NLP) context.
Natural Language Processing is a sub�eld of linguistics, computer science, and arti�cial intelli-
gence. Its main purpose is to study how programs can compute and analyze large amounts of
natural language data. To deal with this problem many deep models have been introduced in
the last twenty years. The �rst models were probably Recurrent Neural Network(RNN)[167,
244, 249] along with Hop�eld networks[103] and Long Short-Term Memory(LSTM)[83, 101] net-
works. Between 2017 and 2018 some cornerstone papers were published introducing the concept
of attention[297] and Transformer[251]. Between 2018 and 2020 many implementations and im-
provements have been proposed such as ELMo[220], BERT[125], GPT[232] and GPT3[30] to
cope with NLP problems. Since 2020 transformers have been applied also to vision classi�cation
tasks via the Vision Transformer(ViT)[60] and broader vision tasks in general[129, 210]. Di�erent
variations have been proposed[23, 170]. More in general, transformers have been applied to di�er-
ent research �elds such as chemistry[259], life sciences[240] and audio processing[59]. Moreover,
di�erent studies tried to embed a transformer backend to previous convolutional models[308].

Transformers for NLP tasks: to understand how a transformer works we �rst need to
introduce the aforementioned concept of attention. Previous models such as LSTM tried to im-
plement techniques to detect long-term dependencies. With the attention mechanism, we can
catch extremely long and e�ective dependencies. Indeed the reference window with the attention
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Figure 2.9: Transformer architecture as presented by Vaswani et al.[297].

mechanism is potentially in�nite, allowing the model to detect dependencies from the whole con-
text. In a nutshell, the attention mechanism analyzes an input sequence and evaluates at each step
which other parts of the sequence are relevant to it.
To intuitively get what the attention module does, suppose to have the n-th new input that after
some steps are encoded into a vector vn. Now we can compute all the scalar products v1 · vn,
v2 · vn, . . ., vn−1 · vn providing us n scalars encoding how similar, i.e. how relevant, each previ-
ous input was w.r.t. the new one.

The attention component is inserted in a larger model that we show in Figure 2.9. Such a model
is composed of two di�erent parts: an encoder and a decoder. Each component both in the en-
coder and in the decoder can be stacked multiple times on the same component to increase the
model capacity.
The encoder’s duty is to map each input to a representation containing the whole information
about the sequence is analyzing. First, the n inputs are passed through an input embedding layer.
The purpose is to use a pre-train embedding layer to map them to a vector of dimensiond. Then, a
positional encoding layer must be introduced as transformers do not have recurrence or convolu-
tion. To accomplish this task, information about the position is injected via positional encoding.
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Figure 2.10: The positional encoding matrix with size d = 512, the same as in the original paper

In the original work about transformers sine and cosine functions with di�erent frequencies have
been used to de�ne a positional encoding matrix PE:

PE(p,2i) = sin
( p

100002i/d

)
(2.54)

PE(p,2i+1) = cos
( p

100002i/d

)
(2.55)

where p is the p-th row and i is the i-th column of the matrix. However, only the �rst d columns
are considered as the p-th input token from the input embedding is summed up to the p-th row.
The sine and cosine wavelengths form a geometric progression from 2π to 10000 · 2π and, as
for any �xed o�set o the PEp,o can be represented as a linear combination of PEp the relative
position encoding is easy to learn for the model. We can show the positional encoding matrix
content in Figure 2.10.

After both embedding and positional encoding are applied to the inputs, we can pass them
through the multi-head attention layer. The name multi-head is related to the presence of h dis-
tinct "heads" computing in parallel. Before feeding the input to the multi-head attention module
three matrices are introduced: the QueryQ, the KeyK , and the Value V . Such matrices are made
by learnable parameters and all of them have dimension d × d. Then we multiply every token
for the three matrices, obtaining 3 vectors of dimension 1 × d. Now we split every vector into
h parts and pass every part to one of the heads. So far we projected the n split embedding into h
subspaces. We can focus on just one of them. Each head receives 3 ·n input vectors, one for every
key, query, and value result for every input. Each vector has dimension 1×d/h. Now we compute
the attention by computing a dot product between each query vector and each key vector received
by the head. We end up with a measure of similarity between each query and each key. Therefore
the output of the attention module is just a n× nmatrixQK encoding how related each query
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is to each other key. Then we multiply each value vector for the corresponding result in theQK
matrix. Then we can normalize each output, dividing by

√
d/h and passing each matrix row to

a softmax layer. We can then sum up such results and obtain a 1× d/h vector and concatenate it
with the output of every head, obtaining a 1×d vector. At this point, we haven vectors with size
1×d. Then we can use the output matrix with dimensiond×d learnable parameters. By going for
a point-wise multiplication of each vector for the output value we obtain againn vectors with size
1×d. This is the output coming from the multi-head attention module. To such output, we add
the input-positioned embedding and we normalize it. Then it is given as input to a feed-forward
model that is just a fully connected network as shown in section 2.4.
It is worth noticing that in the encoder part more than one subsequent encoder can be stacked.
After one or more encoders, the input can be passed to the decoder.
The decoder is similar to the encoder except for the �rst module which is a masked multi-head
attention. In this module all the multiplication between a query and its subsequent values are set
to−∞ so that softmax will provide a 0 as output, meaning that a token cannot use information
about the subsequent tokens because is what the transformer is going to predict at test time. The
remaining part of the model is made by modules we already analyzed.

To better understand the transformer functioning we provide an example of going through the
encoder module. Suppose that we want to translate the following sentence "Hey mate you are
great". The �rst step is to go through the input embedding layer. In the original paper, the em-
bedding output size is 512. The second step consists in adding a marker related to the position via
the positional encoding module. After we pass the �ve tokens through the input embedding and
the positional encoding we obtain 5 tokens with 1× 512 size.

Then we introduce the three learnable matrices, query, key, and value. In order to provide an
intuition on why we need such matrices, we have to understand that such terminology is coming
from the information retrieval context. Usually, when we interact with a program looking up
information like a search engine we provide a set of keywords we are interested in, corresponding
to the query. Then we map the query to the set of possible information, corresponding to the keys.
Lastly, we are provided a set of results, corresponding to the values. In the original paper about
transformers, each matrix has a size equal to the input dimension on both axes, i.e. 512 × 512.
We can now compute a point-wise multiplication between a token and each matrixQ,K , and V .
For every point-wise multiplication, we obtain a 1× 512

We introduced a set of 3 learnable matrices, query key, and value, and we multiplied each token
for each matrix. In the original sentence, we had 5 in di�erent tokens. This way the output will
be a set of 3 · 5 = 15 vectors having each one 1× 512 size.

Now we can split each vector intohparts to pass them properly to thehheads of the multi-head
attention part. In the original paper h = 8. This way we obtain a new subset of 120 vectors each
one with size 1 × 512/8 = 1 × 64. The �rst head receives all the �rst segments of every token.
The second head receives all the second segments of every token. In general, the i-th head receives
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all the i-th subpart of the original tokens multiplied byQ,K , and V . This way the computation
about each token can be parallelized, providing in addition, more stable results.

Now we can focus on the �rst head, keeping in mind that the process we are going to show is
identical in every head of the model. Every head receives, for every token, 3 vectors related to Q,
K and V with size 1 × 64. Now we can compute the dot product between every query vector
and every key vector. As we have one query vector and one key vector for every token the result is
theQK matrix with size 5× 5. Next we can normalize each element in theQK matrix, dividing
by
√
d/h =

√
512/8 = 8. Then we can pass each row of theQK matrix to a softmax layer. As

we worked on every cell or on every row without creating new matrices, the matrix size output is
still 5× 5.

Given the QK matrix, if we consider the i-th token we can compute the product between all
the elements in the i-th of theQK matrix with the corresponding value tokens. Then we can sum
them up, resulting in how much the i-th token is related to the other tokens. The output for every
token is a vector with size 1× 64.

37



2 Machine learning Frameworks

As we do this for every token we obtain 5 tokens with size 1 × 64. This is going to be the
output of a single-head in the multi-head attention. Now we can remember that in the original
paper, the multi-head attention was composed of 8 distinct heads. Therefore we can zoom out
from the single head and, for every token, we concatenate again the 8 output with 1× 64 coming
from the 8 di�erent heads. The result for every token is again a 1× 512 vector.

The last step consists in introducing the output matrix. In the original paper such a matrix
has dimension 512× 512. Then we can compute the product between each vector related to the
tokens obtained in the previous step and the output matrix. The output is again, for every token,
a 1× 512 vector.

This is the �nal output of the multi-head attention and it is ready to be passed to the addition
and normalize module before being passed to the subsequent feed-forward module.
As we were mentioning, the output of the encoder module can be either passed to the decoder or
go through another encoder module. In the original paper, 6 encoder layers are stacked. Also in
the decoder, several layers can be inserted one after another. In the original paper, 6 decoder layers
are stacked.
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Figure 2.11: The overall architecture of the Vision Transformer.

Transformers for vision tasks: in the last few pages we saw how a transformer can be
used to deal with Natural Language Processing problems. Since 2020 the transformer’s idea has
been applied also to computer vision tasks. In the crucial work from Dosovitskiy et al[60] proved
that the transformer architecture can be applied to image classi�cation, paving the way for more
recent advances in the computer vision community.
We saw that the basic idea about training a transformer is to consider a phrase as a set of words and
evaluate their relationship via the attention mechanism. Indeed, with the vision transformer, we
have a similar process. Instead of having a phrase we have an image and we can split it into patches,
where each patch represents a single word. Once we have the "words" we can process them as we
showed for the NLP context. We can show the overall architecture in Figure 2.11

A single image is split into patches and proceeds through the layer producing its �attened ver-
sion. It is worth noticing that the "image" input is now indistinguishable from a word encoded
through the input embedding layer of the original transformer implementation for NLP. The
only main di�erence with the original paper about the transformer is in the extra learnable token
that is used as the �rst token in the procedure. The main purpose of such tokens, originally intro-
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duced by Devlin et al[125] is to aggregate the information learned from the other tokens. Indeed
we can see that is then used in the multi-layer perceptron head to provide classi�cation results.
Also in the vision transformer model, more encoders can be stacked one after another. Three dif-
ferent versions are proposed in the original paper, base, large and huge, depending on how many
encoder layers are used and how many heads are inside every encoder.

2.7 Fitting & Regularization

A common problem in machine learning we have to deal with is about regularization. To better
understand this key concept we must introduce the notion of overfitting. According to the English
Oxford dictionary, the statistical de�nition of over�tting is

O·ver·�t·ting, [’@Uv@r’fItIN]noun: in statistics, the production of an analysis which
corresponds too closely or exactly to a particular set of data, and may therefore fail
to �t additional data or predict future observations reliably.

This situation can happen when a set of points is �tted with a model that has more parameters
than needed. Intuitively, when the model is �tting precisely the training set, it will not be able to
treat correctly new samples as it lacking on the ability to generalize. This situation is the opposite
w.r.t. underfitting. When a model is under�tting over a set of data means that it does not have
enough parameters to adapt itself to the problem. In that context, a more complex model is needed
to understand the relationship between data. The two-folded problem of under�tting/over�tting
is strictly related to the capacity concept we introduced in the previous pages.
A simple problem to better understand the over�tting concept is about �tting a set of points with
a function. Suppose we are provided a set ofm points as we show them in Figure 2.12(Top-Left).
We can intuitively see that such points are generated accordingly to a parabola with some noise.
We show a good �tting function in Figure 2.12(Top-Right). Notice that usually, we do not know
this information. We could �t the training points with a polynomial, de�ned as:

pn(x) =
n∑
k=0

akx
k + b (2.56)

where k is the polynomial degree. If we �t the training points with a polynomial, a hyper-
parameter we must set is the polynomial degree. The two opposite scenarios of under�tting and
over�tting are the following. We could try to �t our training samples with a 0 degree polynomial:
p0(x) =

∑0
k=0 akx

k + b = b, corresponding to the horizontal line at height b. Clearly, this is a
poor interpretation of our data as we are trying to model a set of points intuitively distributed as
a parabola with a straight, horizontal line. This situation corresponds to the under�tting scenario
where our model has only one parameter to set, i.e. b, while it should need more. We show this
situation in Figure 2.12(Bottom-Left). The opposite situation is about using a polynomial with
degree m, equal to the number of points, resulting in pm(x) =

∑m
k=0 akx

k + b. Such a situa-
tion, where the polynomial is going to �t perfectly the training set, corresponds to the over�tting
scenario. The model is too complex as it is trying to interpret the data with a polynomial with a
high degree while we know that such points are generated according to a parabola. The problem
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Figure 2.12: (Top-Left): training set points generated according to a noisy polynomial of degree 2 func-
tion. (Top-Right): polynomial of degree 2 �tting the training set. (Bottom-Left): polynomial
of degree 0 �tting the training set, incurring in an under�tting situation (Bottom-Right): poly-
nomial of degree 9 �tting the training set, incurring in an over�tting situation

with over�tting is that while the model will �t perfectly the training set when dealing with new
points will provide a wrong interpretation given by the too-complex model that was trained with.
We show this scenario in Figure 2.12(Bottom-Right).

Finding a good compromise about model capacity can be a hard task to accomplish and in general,
we saw that too few tunable parameters in the model lead to an under�tting situation. Instead,
having too many parameters can result in an over�tting scenario. This problem, well known in
machine learning, it is usually referred to as bias-variance tradeo� or bias-variance dilemma[18,
57, 78]. Bias and variance are two out of three prediction error sources, while the last one is the
irreducible error due to inherent randomness or feature set incompleteness. Bias usually mea-
sures how far o�, in general, predictions made by a model are distant from the correct value. A
simple machine learning model will have a large bias error as it does not matter how much data
we collect, the model does not have enough �exibility to deal with them. That is the case of Fig-
ure 2.12(Bottom-Left) where the simple polynomial could only move the bias, and will never
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Figure 2.13: The bias-variance dilemma. A too-simple function will provide a high bias error while a too-
complex function will provide a high variance error

adapt to new input. Instead, the variance error is the variability of a model prediction for a given
data point. Usually, we have a large variance term when we over�t our data. Indeed in this situa-
tion, a model with many parameters can adapt precisely to the training set, �tting also the noise
coming from the data. That is the case of Figure 2.12(Bottom-Right) where the complex model
adapts perfectly to the training set.
However, it is worth noticing that these two kinds of error are mathematically tied. Suppose to
have the function f , data generation source, and its estimate f̂ . In this situation, we have that:

E[(f(x)− f̂(x))2] = E[f(x)2 − 2f(x)f̂(x) + f̂(x)2] =
= E[f(x)2]− 2f(x)E[f̂(x)] + E[f̂(x)2]− E[f̂(x)]2 + E[f̂(x)]2 =
= E[f̂(x)2]− E[f̂(x)]2 + f(x)2 − 2f(x)E[f̂(x)] + E[f̂(x)]2 =
= E[(f̂(x)− E[f̂(x)])]2 + (f(x)− E[f̂(x)])2 = V ar(f̂(x)) +Bias2(f̂(x))

resulting in:

E[(f(x)− f̂(x))2] = V ar(f̂(x)) +Bias2(f̂(x)) (2.57)

Stating that on average the error committed by estimating f with f̂ is the sum of variance and
bias squared. We can show such important results in Figure 2.13. The total error, represented by
the black line, is the summation of variance and squared bias. While we increase the model com-
plexity/capacity on the x-axis the bias error decreases while the variance increases. Finding a good
trade-o� between bias and variance via an "optimal" model complexity results in the minimization
of the total error.

In the last few pages, we saw that both over�tting and under�tting can be problematic to treat
and so far the only tool we introduce to tune our model capacity is the number of parameters in-
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Figure 2.14: Instance of image augmentation. On the left, we have the original image. The other three
images are possible augmented images.

volved in the model. In the next pages we are going to introduce di�erent ways to tackle the most
problematic situation, the over�tting one:

• Having more data: remembering what we said before, a model that is over�tting, has a
parameter number that is excessive w.r.t. the available amount of data. In contexts where
we can retrieve more data easily, like the ones when data are synthetically generated, a simple
solution to alleviate the over�tting is to collect new data about the problem we are studying.
Every data point can provide new information about the problem, forcing the model to
adapt and learn a more general mapping function. This is particularly true when dealing
with images as every single image carries a lot of information via its three-channel inputs.

• Data augmentation: in some scenarios, it is not possible to retrieve new data for our model.
A plausible solution to such a problem is about augmenting synthetically the available set
of data. The idea of this process is to apply an a�ne transformation to our input data in
order to generate new data that could be useful for the model to learn. Given an input x
and an a�ne transformation φ(·):

xaug = φ(x) (2.58)

In the image context, some examples of possibleφ(·) functions can be: re�ection, rotation,
scaling, and translation. More than one transformation can be applied at the same time to
increase the variability of the input. Moreover, we can have other image modi�cations such
as brightness and shear. We can show some typical augmentation examples in Figure 2.14

• Regularization: suppose that we have a set of points X and we want to map them to the
label spaceY . We have seen that, given a model with parameters ŵ and a performance mea-
sures function like the square loss de�ned in Equation 2.4, we can minimize the distance
between the proposed solution and the real one. In practice, we want to minimize the dis-
tance between Y and the input multiplied by the available parametersXŵ. Formally:

ŵ = min
ŵ
||Xŵ − Y ||22 (2.59)

by �nding the set of parameters ŵ such that the distance betweenY andXŵ is minimized,
we are looking for the "best" model that can �t our data. The regularization technique
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consists in introducing a slight but fundamental modi�cation to the above minimization
problem:

ŵ = min
ŵ
||Xŵ − Y ||22 + λ ||ŵ||2k (2.60)

in this new minimization problem, we are also trying to minimize the norm of the param-
eters vector. Depending on the norm k we use, di�erent results and names are given to the
optimization problem:

ŵ = min
ŵ
||Xŵ − Y ||22 + λ ||ŵ||21 (2.61)

ŵ = min
ŵ
||Xŵ − Y ||22 + λ ||ŵ||22 (2.62)

The �rst optimization problem is usually referred to as Lasso regularization technique. It
was originally introduced for geophysics problems[250] and named o�cially after a regres-
sion study by Tibshirani[284]. The second one was introduced in the 1970s and it was
named Ridge regularization[96, 102] or Tikhonov regularization. The reason to minimize
the norm of the vector ŵ is two-folded. Philosophically, models with smaller weights cor-
respond to simpler solutions. Forcing the model’s weights to be in a smaller range does not
allow to have complicated solutions perfectly �tting the training data. Mathematically, our
data inherently do not represent perfectly the training distribution and they can be prone
to a small errorE. In this sense, we have that

(X + E)ŵ = Xŵ + Eŵ (2.63)

we can notice that having a smaller ŵ will also reduce the propagation of the errorE.
Lasso and Ridge regularization techniques are di�erent one from another and we can un-
derstand intuitively what is the e�ect of using one technique or the other. Both method-
ologies try to minimize the value of the weights. The main di�erence is that the Ridge
regression technique, when the value of the weights is between 0 and 1 does not have huge
bene�ts to force them going to zero. Instead, the lasso regularization cost is linear even
when the values are between 0 and 1. In this sense Lasso will try to force as most as possible
weights to 0, providing more sparse solutions.

• Early stopping: when de�ning over�tting, we saw that such a situation can happen whether
our modelm starts to �t the noise in then data points. We also saw that usually this means
a perfect �t on our training data as shown in Figure 2.12(Bottom-Right). It is easy to un-
derstand that �tting perfectly the training points correspond to a training error:
L̂(m, f) = 1

n

∑n
i=1 l(m(xi), f(xi)) = 0

In a more complex model, the convergence to zero error on the training set happens grad-
ually. Usually, to evaluate the goodness of our model we test it on a di�erent set of data
called validation set. This way we understand how well the model generalizes to new data.
The early stopping technique[228, 312] consists in halting the training procedure when the
error committed on the validation set starts to grow. Indeed we cannot use the training
loss to evaluate the over�tting situation as the model will learn more and more about the
training data trying to minimize the loss of such data.
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Figure 2.15: A common over�tting situation. The dataset used in this training process is the CIFAR10
dataset. The training loss is decreasing over epochs while the validation one reaches a minimum
before starting to increase. According to early stopping, the model’s parameters stored are the
ones computed at epoch 13 where the validation error reaches its minimum.

From a practical point of view, most of the models used nowadays such as neural networks
and transformers learn iteratively over time. The early stopping force the training to stop
the training and save the model’s parameters when a promising local minimum is reached.
This situation is shown in Figure 2.15. The image shows the loss obtained by training a
convolutional model on the popular dataset CIFAR10[142].

We can see that the training process through the epochs leads to a monotonic error decrease
for the training set. Instead, the validation set error is at �rst comparable with the training
set error. At epoch 13 the validation error reaches a minimum, marked by the dotted line
in Figure 2.15. After epoch 13 the validation error starts increasing over the epochs. This
is a clear over�tting phenomenon. The early stopping criterium would store the model’s
parameter computed during epoch 13. Such parameters are apparently the best ones we
can use to generalize on unseen samples.

The regularization techniques we have seen in the previous pages like Lasso and Ridge op-
erate directly on loss function to encourage the model to provide simpler solutions. Such
approaches are referred to as explicit regularization. The early stopping technique does not
in�uence directly the considered loss function. Instead, it studies the model’s behavior dur-
ing the training and selects a-posteriori the best parameters con�guration. Such technique
is usually referred to as implicit regularization.
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• Dropout: the last technique we introduce to prevent over�tting is called dropout. Intro-
duced in 2012 by Hinton et al.[100], it is a very popular solution to regularize neural models
by preventing complex co-adaptations on training data. Indeed a common issue with large
neural networks is co-adaptation where all the weights are learned together and it some con-
nections will have more predictive capability than others. Usually, as the network is trained
iteratively, connections with more predictive capability are learned more and more while
the weaker ones become less important at each iteration.
The main idea about dropout is to ignore some nodes in a layer during the training pro-
cess. The hyper-parameter we need to set to perform such operations is usually the amount,
i.e. the percentage pd, of nodes we want to shut down during the training, along with all
their incoming and outgoing connections. This operation in neural models involves a sin-
gle layer. Therefore we can perform it di�erently on each layer. Usually, epoch after epoch,
the set of neurons that are shut down, changes. This way, by not considering the output
coming from a certain amount of neurons, i.e. by "dropping out" a subset of neurons, we
are making the model more robust. Dropout simulates a sparse activation in the model
coming from a certain layer, encouraging the network to learn a sparse representation as a
side e�ect. This should be guaranteed by the fact that the model is presented with a di�erent
piece of information about the data in every epoch. Formally, given a datasetX with labels
Y , a simple single layer network having n neurons and a pd amount of dropout minimizes
the following quantity:

L̂dr(X,Y ) = l

(
Y,

n∑
i=1

δi(1− pd)wiXi

)
(2.64)

where δi(1−pd) is a Bernoulli function with parameter pd, meaning that its value is 0 with
probability pd, and 1 otherwise. If we compute the gradient of L̂ along everywi direction
we have:

∂L̂dr
∂wi

= −Y δiXi + wiδ
2
iX

2
i +

n∑
j=1,j 6=i

wjδiδjXiXj (2.65)

It is possible to show that the empirical loss L̂dr of such network with dropout has a rela-
tionship with the loss L̂ of a neural network without dropout as:

E

(
∂L̂dr
∂wi

)
=

∂L̂

∂wi
+ wipd(1− pd)X2

i (2.66)

stating that the expectation of the gradient when we introduce dropout is equal to the gra-
dient of the regularized regular network whenw′ = (1−pd)w. We saw that an over�tting
situation happens when, given a set of data, we try to map the input to the output with a
model that has too much capacity. In this sense, when a layer is forced to drop some of its
neurons, its computation capacity is reduced.
The dropout capacity reduction is applied only at training time. Once the model is done
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with learning, we can restore normal connectivity between nodes in di�erent layers and test
the model on unseen data with its full capacity.
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Machine learning efficiency
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In the previous chapter, we introduced a set of important machine learning notions. Through the
basic ingredients of machine learning such as performance measure, task, and experience we were
able to properly de�ne what a model is. We also saw that in the machine learning �eld, we can have
a wide plethora of di�erent models. We introduced some of them such as neural networks and
transformers. The last decade has seen a massive increase in neural model usage, both in academic
and company contexts, showing outstanding results. In this sense, the impressive performances of
deep learning architectures are associated with a massive increase in model complexity. Millions of
parameters need to be tuned, with training and inference time scaling accordingly. But is massive
�ne-tuning necessary?
In this chapter, we are going to focus on image classi�cation, considering a simple transfer learn-
ing approach that exploits pre-trained convolutional features as input for a fast kernel method.
We refer to this approach as top-tuning since only the kernel classi�er is trained on the target
dataset. By performing more than 3000 training processes involving 32 di�erent target datasets,
we show that this top-tuning approach provides comparable accuracy w.r.t. �ne-tuning, with a
training time that is between one and two orders of magnitude smaller.
These results suggest that top-tuning provides a useful alternative to �ne-tuning in small/medium
datasets, especially when training e�ciency is crucial.
This chapter is organized as follows: section 3.3 presents an account of the relevant background
while section 3.4 reports details on our methodology. We also present the hyper-parameters con-
�guration and provide details on the datasets involved in the experiments. In section 3.5, we illus-
trate the results of our empirical analysis. Finally, section 3.6 is left to concluding remarks.

3.1 Motivations

In the last decade, deep learning has led to unprecedented successes in computer vision, at par
with human performances in several tasks[144, 207, 299]. In particular, Convolutional Neural
Networks (CNNs)[84, 237] proved successful in a wide range of domains[162], from medical im-
ages[14, 161, 195, 279, 310] to robotics [7, 31, 146, 199] and cyber-security[163, 322], to name a few
examples.
These advances are related to a frenetic increase in model complexity[87, 151, 278, 297, 318], de-
mand for data[84] and corresponding growth of computations[33]. Several solutions have been
proposed to alleviate the need for labeled data, from few-shot learning[266, 302] to self-supervision
techniques[55, 80, 315], and also to reduce the inference time, e.g. via pruning techniques [159, 179,
238].
Instead, on the computational resources needed during the training process, we are observing a
visible tendency towards deeper and wider models. Such a trend can be problematic when re-
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Figure 3.1: The Fine-Tuning pipeline. All the model weights are updated.

Figure 3.2: The Top-tuning pipeline. Only the fast kernel weights are updated.

sources are budgeted, as training models from scratch can be prohibitive[158, 272].
Di�erent contributions can be found in literature, from replacing the fully connected layers with a
more e�cient component[311] to combining convolutional networks with gaussian process[287]
or with kernels[306].
Another solution is transfer learning[113, 208, 260, 261, 304, 325], an approach that can tackle both
the issues of data scarcity[114] and long training times, by leveraging pre-trained models to address
new problems.
The knowledge learned on a problem is stored in the weights of the model. In many practical
scenarios with limited availability of data and computational resources, these pre-trained weights
represent a good starting con�guration to obtain a more re�ned knowledge of the new task.
In particular, a very common approach is the so-called fine-tuning[162, 317] strategy, where the
weights of the network are initialized with pre-trained models and only (�ne) tuned rather than
being trained from scratch — see Figure 3.1.

Instead, in the following pages we consider an approach that adopts convolutional features[262]
produced by a state-of-the-art model pre-trained on ImageNet [51], with no further tuning. These
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features are used as input to train anew a fast and scalable kernel classi�er [188, 243]. Such a model,
based on Nyström approach to reduce the problem size and on a preconditioned gradient solver
for kernel methods, has a remarkable impact on performances, including training time and scala-
bility. We refer to such approach as top-tuning and we show it in Figure 3.2.
This is a simple idea [3, 76, 85, 120], that we re-examine in the light of common practices for trans-
fer learning using deep nets and of fast and scalable kernel methods. Indeed, our analysis consider
a set of pre-trained features as input to a fast kernel methodology.
Although we do not focus on a speci�c application, we have in mind scenarios where computa-
tional resources are budgeted and fast training is relevant. This is typical of robotics devices and
autonomous systems, especially when operating in unconstrained, quickly changing scenarios,
where multiple training may need to be done on the �y [177, 211].
Our study shows that top-tuning is a promising alternative to �ne-tuning for small-medium-sized
datasets. Indeed, top-tuning provides comparable accuracy w.r.t. �ne-tuning (sometimes slightly
worse, and sometimes slightly better), with training times between one and two orders of magni-
tude smaller.

To assess the potential of the proposed methodology, in our experimental analysis we focus on
three di�erent aspects:

• Target dataset: to ensure the generality of our empirical observations, we consider 32 tar-
get datasets, showing that the top-tuning approach is ' 85 times faster on average w.r.t.
the �ne-tuning one. To provide more robust results we con�rm our �ndings with two ad-
ditional head classi�ers: a naive shallow net and a ridge regressor, showing a smaller still
signi�cant speed-up.

• Pre-trained model: to evaluate the in�uence of a speci�c model, we include seven di�er-
ent state-of-the-art pre-trained models. We consider complex architectures such as Xcep-
tion and Vision Transformers as smaller models aimed at embedded devices such as Mo-
bileNetV2. Our �ndings are con�rmed showing that despite di�erent pre-trained models,
the top-tuning approach is' 70 times faster on average w.r.t. the �ne-tuning one.

• Pre-training dataset: to assess dependency on the source dataset, we consider four distinct
datasets for pre-training, taking into account di�erent factors such as the amount of im-
ages and classes, and image size. We show the in�uence of the pre-training dataset on the
downstream task, identifying the number of classes as a crucial factor in the pre-training
dataset.

3.2 Background

In this section, we review some fundamental algorithmic ideas to establish the notation and high-
light a few key points. We start by de�ning the multiclass classi�cation problem. Then, we con-
sider deep learning models with �ne-tuning procedures. We conclude with a focus on the no-
tuning approach, by considering the fast kernel classi�er trained on deep features.
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Multiclass learning: given a set of input-output pairs (x1, y1), . . . , (xn, yn) the goal of
supervised classi�cation is to �nd a classi�cation rule c to predict the outputs corresponding to
new inputs. Here, the inputs are high dimensional vectors xi ∈ Rd, for instance images, and the
outputs are discrete labels yi ∈ {1, . . . , T}, for instance di�erent semantic classes.
Each label yi in the training set is mapped into a vectorial one-hot encoding
yi ∈ {e1, e2, . . . , eT } ⊂ RT
The search for a classi�cation rule is formulated as the search for a vector function f : Rd → RT ,
where for all x:

f(x) = (f1(x), f2(x), . . . , fT (x)) (3.1)

Deep learning & fine-tuning: we can recall the class of neural networks we described in
section 2.4. We have seen that a neural network can be described as a sequence of feature maps Φ
organized in subsequent layers as

Φ(x) = ΦL ◦ ΦL−1 ◦ . . . ◦ Φ1(x) ∈ Ru` .

We have seen that also convolutional layers are based on composing linear and non-linear oper-
ations, with linear operations as convolutions. In this sense, the convolutional neural network
can be described as

Φ(x) = ΦL ◦ ΦL−1 ◦ . . .ΦC+1︸ ︷︷ ︸
Fully connected layers

◦ΦC ◦ . . . ◦ Φ1(x)︸ ︷︷ ︸
Convolutional layers

In the following, we view the convolutional layers as providing the data representation, through
the feature map ΦC ◦ . . . ◦ Φ1(x), while the fully connected layers as de�ning a classi�er. This
distinction is useful in our discussion, although it may be blurred in practice. All layers are trained
in an end-to-end fashion minimizing an empirical error via back-propagation, provided a suitable
initialization. The training can be made more or less aggressive at each layer by choosing di�er-
ent learning rates. We note that the vast majority of parameters in an architecture such as Equa-
tion 2.51 are in the fully connected layers, and hence their training is the most computationally
demanding part. Training from scratch often requires large datasets, and using previously trained
weights provides an interesting initialization strategy when data are not massive. This is the basic
idea of transfer learning by fine-tuning [162, 317]. Previously learned weights are �ne-tuned for
the task at hand. This can amount to updating only the last layer(s), which is necessary since the
labels might be di�erent, but also a deeper tuning where convolutional layers are also updated. In
the following, we give up end-to-end training and replace the fully connected layers with a kernel
classi�er. In this view, only the very last layer is tuned/updated.

Top-tuningvia fastkernelclassifierswith pre-traineddeep features: the strat-
egy used here can be described with the same notation introduced before. Indeed, we are still con-
sidering functions of the form of Equation(2.37), Equation(2.38), but now the feature map Φ is
given by
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Φ = Ψ︸︷︷︸
Kernel feature map

◦ ΦC ◦ . . . ◦ Φ1︸ ︷︷ ︸
Convolutional layers

. (3.2)

where Ψ is a typically in�nite-dimensional feature map corresponding to a kernel on the pre-
trained features, like the one described in Equation 2.19. In our experiments, we consider the

Gaussian kernel k(z, z′) = e
− |z−z

′|2

2γ2 , where γ is the kernel width. Unlike before, here both the
convolutional features ΦC , . . . ,Φ1 and the kernel features Ψ are assumed to be �xed and are not
trained/tuned. The only free parameters are computed by a ridge regression minimizing

n∑
i=1

|WΦ(xi)− yi|2 + λ|W |2F (3.3)

where | · |F if the Frobenius norm. Indeed, the above problem can also be rewritten as:

n∑
i=1

T∑
t=1

(〈wt,Φ(xi)〉 − yti)
2 + λ

T∑
t=1

|wt|2 =
T∑
t=1

(
n∑
i=1

(〈wt,Φ(xi)〉 − yti)
2 + λ|wt|2) (3.4)

which is simply a one versus all classi�er, based on solving each binary classi�cation problem
by ridge regression.
From the above expression, it is clear that only the choice of the hyperparameters λ, γ couples the
training of the one-vs-all classi�ers that are otherwise independent.
Before discussing our experiments we brie�y recall some ideas that allow us to massively speed up
the training of kernel ridge regression classi�ers [188]. Indeed, using the representer theorem [255]
we have that

f(x) = WΦ(x) =
n∑
i=1

k(x, xi)ci, ci ∈ RT , (3.5)

where the coe�cients satisfy the linear system

(K + λI)C = Y, (3.6)

where C = (c1, . . . , cn),Y = (y1, . . . ,yn) ∈ Rnt, and K ∈ Rnt with Kij = k(xi, xj).
However, since the solution to the above system is typically costly, we can consider a Nÿstrom
approximation[204] taking a smaller set of m < n randomly selected points x̃1, . . . , x̃m in the
representer theorem

f̃(x) =

m∑
i=1

k(x, x̃i)ci, c̃i ∈ RT (3.7)

so that the coe�cients now satisfy the linear system

(K>nmKnm + λKm)C̃ = K>nmY, (3.8)
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where C̃ = (c̃1, . . . , c̃n),Y = (y1, . . . ,yn) ∈ Rmt, Knm ∈ Rnm with (Knm)ij =
k(xi, x̃j), Km ∈ Rmm with (Km)ij = k(x̃i, x̃j). Finally, following [188] the linear system
in Equation 3.8 is solved by conjugate gradient using an approximate preconditioner given by
(K2

m+λKm). This latter approach yields a time/memory complexity which isO(nmT )/O(nm)
as opposed to the complexity of exact kernel ridge regression (3.6) which isO(n3)/O(n2).

Conjugate gradient: now we brie�y talk about the conjugate gradient technique, used in
the top-tuning classi�er. Aside from that, it is a useful methodology to deal with large linear sys-
tems of equations and can be adapted to solve nonlinear problems.
Originally introduced by Hestensen and Stiefel[94] is an iterative method for solving a linear sys-
tem. Can be used as an alternative to gaussian elimination, as a suitable methodology for large
linear systems. Its performance depends on the eigenvalues of the coe�cient matrix.
Suppose we want to solve a linear system de�ned as

Ax = b (3.9)

where A is a n × n symmetric positive de�nite matrix. Solving the linear system is equivalent
to solving the following optimization problem:

minφ(x) =
1

2
xTAx− bTx (3.10)

Indeed, this can be immediately seen as:

∇φ(x) = Ax− b def
= r(x) (3.11)

The main idea about the conjugate gradient method is to produce a set of vectors called conju-
gate vectors having a conjugacy property. Indeed, a set {p0, p1, . . . , pl} is said to be conjugate w.r.t.
a matrixAwhether ∀i 6= j

pTi A pj = 0 (3.12)

We can notice that vectors in a conjugate set are also linearly independent.
The intuition about the conjugate gradient method is minimizing the φ(·) problem in n steps by
�rst determining the conjugate directions, i.e. the "important" directions, and then by successively
minimizing along every conjugate direction.
Given a starting point x0 ∈ Rn and a conjugate set {p0, p1, . . . , pl} we can generate a sequence
of steps {x1, . . . , xk}where

xk+1 = xk + αkpk (3.13)

having step length αk = − rTk pk
pTkApk

. It is possible to prove that under such conditions the se-
quence {xk} converges to the solution x∗ of the linear system de�ned in Equation 3.9 in at most
n steps. We can provide a simple geometric interpretation of the above problem. When the A
matrix is diagonal, the contours of the function φ(·) are ellipses with axes aligned with the carte-
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Figure 3.3: Geometric interpretation of conjugate gradient technique. (Left) When theAmatrix is diago-
nal, the contours of the functionφ(·) are ellipses with axes aligned with the cartesian coordinate
direction e1, e2. The optimal point is reached within n steps. (Right) When the A matrix is
not diagonal w.r.t. e1, e2. More than n steps are needed.

sian coordinate direction e1, e2. We can show such a situation in Figure 3.3(left). We can �nd the
minimum by performing a one-dimensional optimization along each coordinate.
Instead, this is not true when A is not diagonal. In that situation, the algorithm will not move
along the e1, e2 directions.

However, we can recover the good situation shown in Figure 3.3(Left) by transforming the
problem and making A diagonal along e1, e2 directions. We transform the problem by de�ning
a new input x̂

x̂ = S−1x (3.14)

where S is a n× nmatrix de�ned as

S = [p0, p1, . . . , pn−1] (3.15)

the set of conjugate directions w.r.t. A. The quadratic problem we de�ned in Equation 3.10
now becomes:

φ̂(x̂)
def
= φ(Sx̂) =

1

2
x̂T (STAS)x̂− (ST b)T x̂ (3.16)

where STAS) is diagonal by conjugancy property. Now we can minimize along the x̂ co-
ordinates. Performing the input transformation is important as at every step we determine one
component of the solution x∗. On this we have a theorem, stating that for any x0 ∈ Rn we con-
sider the sequence {xk}, then rTk pi = 0 for every step i ∈ [0, 1, . . . , k − 1]. Moreover, xk is a
minimizer of Equation 3.10 over the set

{x|x = x0 + span{p0, p1, . . . , pk−1}} (3.17)
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Clearly, the whole procedure relies on the direction we select to transform our input. Di�er-
ent solutions have been tested in the past such as computing the eigenvectors which is a good but
expensive methodology. Also modifying the Gram-Schmidt orthogonalization is possible but in-
curring in the problem of storing the entire direction set. Instead, the conjugate gradient method
produces the subsequent direction based only on the previous one. That means that to compute
the new conjugate vector pk it only needs pk−1 without needing p0, . . . , pk−2. Indeed, each di-
rection pk is a linear combination of the negative residual−rk

pk = −rk + βkpk−1 (3.18)

where βk =
rTk Apk−1

pTk−1Apk−1
.

Overall, the conjugate gradient algorithm is shown in Algorithm 1. With all these considerations
in mind is possible to prove that

• p0, p1, . . . , pn−1 are conjugate gradient directions, implying the convergence in n steps

• The residuals {rk} are mutually orthogonal

• Each direction pk and the residual rk are contained in the Krylov subspace[164, 263] of
degree k for r0

K(r0, k)
def
= span{r0, Ar0, . . . , A

kr0} (3.19)

Algorithm 1 Conjugate gradient algorithm
Require: x0

r0 ← Ax0

p0 ← −r0

k ← 0
while rk 6= 0 do

αk ← −
rTk rk
pTkApk

xk+1 ← xk + αkpk
rk+1 ← Axk+1 − b
βk+1 ←

rTk+1Apk

pTkApk

pk+1 ← −rk+1 + βk+1pk
k ← k + 1

end while

To accelerate the conjugate gradient method, we usually couple it with a preconditioning tech-
nique[22]. Similarly to the transformation we saw previously, we transform the linear system
x̂ = Cx obtaining

φ̂(x̂) =
1

2
x̂T (C−TAC−1)x̂− (C−T b)T x̂ (3.20)

and using the conjugate gradient algorithm to solve the linear system
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(C−TAC−1)x̂ = C−T b (3.21)

Selecting a good preconditioner is fundamental to obtaining good performances on the prob-
lem we want to solve. There is no general best solution as knowledge about the structure and
origin of the problem is the key. However, di�erent practical preconditioners have been proposed
in the past such as symmetric successive overrelaxation(SSOR)[86], incomplete Cholesky[127] and
banded preconditioners[182].

So far we focused on linear scenarios. The conjugate gradient can be used with a general con-
vex function f thanks to the extension provided by Fletcher and Reeves[70] and its Polak-Ribiere
variant[225]. Such approaches are based on two simple changes

• In place ofαk ← −
rTk rk
pTkApk

we perform a line search identifying an approximated minimum
of the φ non-linear function along pk

• The residual r,is replaced by gradient of non-linear objective function f

3.3 Relatedworks

The investigation of transfer learning settings and how di�erent parameters in�uence perfor-
mances in terms of accuracy and training time is not itself a novelty. Recent works focus on the
properties of speci�c neural network architectures on transfer-learning accuracy. In [137], the au-
thors assess whether models that achieve the best performances when trained on ImageNet show
the same trend also on other vision tasks. They �nd that a model accuracy on ImageNet corre-
lates with the performances of the same model �ne-tuned on target tasks. Another recent work
[201] suggests that additional factors are involved in determining the transferability of models on
top of ImageNet pre-training accuracy. The authors show that a high degree of diversity in the
features learned brings better transferable models. The usage of ImageNet as a source dataset in
transfer-learning frameworks has become a standard for di�erent computer vision tasks [38, 89,
109, 111, 185, 216]. Recent works focus exactly on investigating what are the features of ImageNet
responsible for the high descriptive quality of a pre-trained ImageNet model learned features. In
[111] the authors perform an empirical investigation on ImageNet properties, training a CNN on
di�erent subsets of ImageNet, varying the number of samples, classes, and granularity to assess
their e�ect in terms of accuracy.

At the same time, several works focus on the problem of speeding-up training process, evaluat-
ing potential in�uencing factors, and proposing faster training strategies [90, 118, 136, 181].
In [90] the authors focus on the impact of a CNN complexity on the training time, evaluating
the accuracy with constrained time cost, considering the in�uence of di�erent factors including
depth, number of �lters, and �lter size.
In [136], the authors investigate the paradigm of pre-training deep models on large supervised
datasets in a transfer-learning framework for di�erent vision tasks. They introduce a cheap �ne-
tuning protocol that avoids expensive hyperparameters search, which is replaced by a custom
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heuristic procedure. In [181] and [118], di�erent strategies to modify convolutional �lters are pro-
posed to reduce the training and inference time for CNNs. Another relevant area of research
includes the compression of deep neural networks to reduce their storage and computational cost
(e.g., parameters pruning and quantization) [39, 159].
The cited works focus on investigating transfer-learning parameters that in�uence performances
in terms of accuracy or strategies to reduce training time, with no speci�c comparison between
di�erent approaches nor evaluating the trade-o� between accuracy and training resources.
In the following pages, instead, we perform an extensive experimental analysis comparing di�erent
top-tuning and �ne-tuning approaches on a large ensemble from small to medium size datasets.
We show that convolution features pre-trained on rich datasets as ImageNet, provide general-
purpose features which can be transferred to a new task simply by training an external classi�er,
with a signi�cant training process speed-up.
The speed-up we achieve is also boosted by the choice of a fast kernel method as a head classi�er.
In the last few years, the fast kernel approach we are adopting was tested in di�erent scenarios. In
[188, 197] theoretical guarantees for the Nyström approximation technique is provided and empir-
ically examined. Its e�ectiveness in terms of speed is shown on classical numerical feature datasets,
not dealing with computer vision datasets.
In [34, 177] the fast kernel is tested on speci�c robotic datasets for detection and pose-estimation
tasks.
In [12, 19, 187] Nyström approximation is tested on basic image datasets such as MNIST and CI-
FAR10 while in [305] it is used for 3D surface reconstruction. In our work we instead present an
extensive analysis of more than thirty general-purpose image datasets, proving the e�ectiveness of
the fast kernel approach on a wide set of image classi�cation tasks, and showing its potential in
the computer vision domain.

3.4 Methodology

Given the above discussion, we �rst describe the two basic approaches we consider for transfer
learning. Then, we present technical details about the conducted experiments. We consider the
hyper-parameters tuning, both for the �ne-tuning and top-tuning procedures. Lastly, we report
details about the datasets used in the empirical analysis.

Pipelines: we assume we are given a state-of-the-art deep learning model pre-trained on a source
dataset (e.g. ImageNet), and a target dataset of input-output pairs {(xi, yi)}ni=1 to address a new
image classi�cation problem. In our study we compare two alternative transfer approaches:

1. Fine-tuning: we add fully connected layers on top of the pre-trained architecture. Then we
�ne-tune the model for the new task. Notice that this procedure updates both the param-
eters of the fully connected and of the pre-trained part.

2. No-tuning: we use convolutional features produced by a state-of-the-art model pre-trained
on ImageNet, with no further tuning. These features are then used as input to a fast kernel
classi�er. It is worth noticing that this procedure uses the pre-trained part of the network
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only once, without updating its weights. Only the parameters of the classi�er are updated.

Experimentsdetails: a model can be tuned in several ways involving numerous hyper-parameters.
In our analysis, we do not focus on an exhaustive hyper-parameters exploration. Instead, we con-
sider a set of plausible con�gurations, both for the �ne-tuning and the top-tuning pipelines, ac-
cording to guidelines in previous works. It is worth noticing that, for each pipeline, the overall
training time is computed as the summation of every considered con�guration training time.

• Fine-tuning: we perform a �ve-fold cross-validation analysis involving the following hyper-
parameters:

- Training steps: inspired by previous studies on a similar context[137] we limited this
quantity to 20.000 training steps, coupled with an early stopping criterion.

- Early stopping: we monitor the validation loss with a patience parameter equal to 10.

- Weights update: we only consider �ne-tuning the whole convolutional part, making
the model more adaptable to the downstream task w.r.t. the top-tuning approach.
That is to avoid a combinatorial explosion in the number of con�gurations, that
would result in excessive and unfair training time for the �ne-tuning pipeline.

- Batch size: taking into account previous studies about batch size[21, 88, 137, 184] we
compute it as: b = b22·log10(n)−1cwhere n is the number of points in the dataset.

- Optimizer: we use default Stochastic Gradient Descent (SGD). As suggested by[81],
we use two di�erent learning rates: l = {0.1, 0.01}

All the hyper-parameters for our neural network model are �xed but the learning rate.
Hence we run one training instance per each considered learning rate value, taking the best-
performing one for the results.
The training time reported in the results is the sum of the computational time requested
for both training instances.

• Top-tuning: also for the top-tuning approach we perform a �ve-fold cross-validation anal-
ysis involving the following hyper-parameters:

- Kernel: the approximated kernel ridge regression is based on a Gaussian kernelk(z, z′) =

e
− |z−z

′|2

2γ2 , with γ kernel width. We use two values of γ = {102, 103}.

- Regularization: we consider two values for the regularization term: λ = {10−5, 10−6}

With two possible values for both kernel width and regularization, we run four di�erent
training instances, taking the best-performing one for the results. The training time re-
ported in the results is the sum of the computational time requested for the four training
instances.
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Datasets details: We include 32 datasets in our experiments, from a wide range of contexts
and scenarios (see Table 3.1). Our collection includes popular datasets in the computer vision

Dataset name #images (Tr/Te) Img. size mean #classes
AFHQ (AF)[40] 13.167/1.463 512× 512 3
Beans (BE)[147] 1.167/128 500× 500 3

Best artworks (BA)[281] 7.896/878 980× 921 50
Boat types (BT)[46] 1.315/147 905× 1234 9

Caltech-101 (C101)[66] 3.060/6.084 251× 282 102
Cassava (CSV)[198] 7.545/1.885 573× 611 5

Cats vs Dogs (CVSD) [65] 20.935/2.327 365× 410 2
Chest xray (CXRAY) [126] 4.708/524 968× 1321 2

CIFAR10 (CIF10) [142] 50.000/10.000 32× 32 10
CIFAR100 (CIF100) [142] 50.000/10.000 32× 32 100
Citrus leaves (CLV) [236] 534/60 256× 256 4

Colorectal hist (COL) [124] 4.500/500 150× 150 8
Deep weeds (DW) [205] 15.758/1.751 256× 256 9

DTD (DTD)[43] 3.760/1.880 453× 500 47
EuroSAT (ES) [92] 24.300/2.700 64× 64 10

FGVC Aircraft (AIR)[178] 6.667/3.333 353× 1056 100
Footb vs Rugby (FVSR) [77] 2.203/245 618× 788 2

Gemstones (GEM) [37] 2.571/286 330× 335 87
Hors or Hum (HVSH) [196] 1.027/256 300× 300 2

iCubWorld subset (ICUB)[211] 86.400/9.600 256× 256 10
Indian Food (IF) [227] 3.600/400 550× 610 80

Make No Make(MVSN)[275] 1.355/151 211× 246 2
Malaria (MAL) [234] 24.802/2.756 133× 132 2

Meat quality (MQA) [290] 1.706/190 720× 1280 2
Oxford Flowers (OF) [203] 2.040/6.149 538× 624 102

Oxford-IIIT Pets (OP) [209] 3.680/3.669 383× 431 37
Plankton (PL) [213] 4.500/500 106× 120 10

Sars Covid (SCOV) [267] 2.232/249 260× 350 2
Stanford Cars (SC) [141] 8.144/8.041 308× 573 196
Stanford Dogs (SD) [131] 12.000/8.580 386× 443 120

Tensor�ow Flowers(TFF) [282] 3.303/367 272× 365 5
Weather (MW) [271] 1.012/113 335× 506 4

Table 3.1: The datasets adopted in our analysis. For every dataset, we provide the amount of images (train
and test split, respectively), the mean image size of the dataset and the number of classes.
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community, like CIFAR10/100 and Caltech101, as well as more challenging datasets where the
amount of data is limited with respect to the number of classes and complexity of the task (e.g.,
Stanford Cars and FGVC aircraft).
Finally, we include datasets with a signi�cantly limited amount of images, to consider practical
cases where transfer learning procedures may be fundamental (e.g., Beans and Citrus leaves).
From Table 3.1 we can notice that both number of images and classes can vary deeply from one
task to another. This can in�uence the task’s hardness. On average each dataset has 11746.46
images and 35.21 classes. The average number of images per classes is 1780.24. The dataset with
most images per class is the Malaria dataset with 12401 images per class. The dataset with few
images per class is Oxford Flowers with 20 images per class.

3.5 Experiments

We now describe the details of the empirical analysis. We compare �ne-tuning and top-tuning in
terms of accuracy and training time. To provide robust results we also replace the fast-kernel head
classi�er with a vanilla fully connected network and a ridge regressor. Then, we consider seven
di�erent pre-trained neural networks to replace the pre-trained architecture used by both �ne-
tuning and top-tuning, to weigh the dependency of the results w.r.t. the pre-trained architecture.
Lastly, we evaluate the importance of pre-training by considering four di�erent datasets as pre-
train for our model. All the experiments have been carried out on a single Quadro RTX 6000
GPU, 24Gb VRAM.

3.5.1 Top-tuning is highly faster with limited accuracy drop

To compare �ne-tuning and top-tuning approaches, we �rst �x the neural network model and the
pre-training dataset, considering an ImageNet pre-trained DenseNet201[108] architecture. This
model represents a good compromise between predictive power and size in terms of number of
parameters.
We consider the 6 di�erent con�gurations de�ned in section 3.4 averaging the results of a 5-folded
procedure over the 32 datasets, resulting in 6 · 5 · 32 = 960 distinct training processes.

In Figure 3.4 we show the overall accuracy results. Each point represents a di�erent dataset. Its
position is given by the accuracy obtained by the best �ne-tuning con�guration on the x-axis, and
by the best top-tuning con�guration on the y-axis. The diagonal is marked for readability pur-
poses. Intuitively, when a point is lying below the diagonal, the �ne-tuning model is performing
better w.r.t the top-tuning one, and vice versa.
Most of the datasets lie around the diagonal, showing similar accuracy between �ne-tuning and
top-tuning methods. Indeed,

∆Acc = Acctop−tuning −Accfine−tuning ∈ [−2.5%,+2.5%]

in 60% of our experiments.
For these datasets, the bene�ts coming from the �ne-tuning procedure are either absent or typi-
cally marginal. Indeed, on half of the considered datasets, the top-tuning procedure is performing
better than the �ne-tuning one.
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Figure 3.4: Overall accuracies on di�erent target datasets. Each point represents a dataset. The accuracy
was obtained by the best �ne-tuning model on the x-axis, and by the best top-tuning model on
the y-axis. When a point is lying below the diagonal, the �ne-tuning model is performing better
w.r.t the top-tuning one, and vice versa.

Only on few datasets, e.g. FGVC aircraft and Stanford Cars(SC), �ne-tuning provides a bene�t.
This behaviour could be related to two factors. (i) Representation in ImageNet: as pointed out
by [137], in ImageNet cars and planes are represented at a coarse-grained level. For instance, Im-
ageNet contains only two plane classes; (ii) Dataset hardness in terms of the number of classes,
granularity, and the amount of images per class.

In Figure 3.5 we show the overall results in terms of training time. Each column refers to a di�er-
ent dataset, reporting the speed-up obtained by the top-tuning w.r.t. �ne-tuning. For instance,
on the AFHQ dataset, the top-tuning training was ∼ 95 times faster. The top-tuning model is
always highly faster to train than the �ne-tuning one. The speed-up is in the range [10,150] with
mean 84.64± 38.97 across the datasets.
On larger datasets, e.g. CIFAR100, the training time was reduced from ∼ 2 hours to ∼ 10
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Figure 3.5: Overall speed-up on di�erent target datasets obtained by the top-tuning model w.r.t. the �ne-
tuning one. Each column represents a dataset. The corresponding height represents the speed-
up factor of the top-tuning model w.r.t. the �ne-tuning one(e.g. on the AFHQ dataset the
top-tuning training was ∼ 95 times faster). All the experiments have been carried out on a
single Quadro RTX 6000 GPU, 24Gb VRAM.

minutes; computed as the training time sum of the two �ne-tuning and four top-tuning con�gu-
rations, respectively.
We can relate the faster training time to (i) number of parameters: the top-tuning model have a
number of parameters on average two orders of magnitude lower than the �ne-tuning ones; (ii)
impact of backpropagation: every layer needs to wait for the subsequent layer computation.

In Figure 3.6 and Figure 3.7 we show an in-depth analysis reporting accuracy and training time
for every dataset.

Table 3.2 summarizes the quantitative results obtained with our experiments both in terms of
accuracy and training time speed-up. For every dataset, we report the ∆Acc = Acctop−tuning −
Accfine−tuning and the corresponding speed-up.
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Figure 3.6: Overall accuracy and training time for the datasets considered in the empirical analysis, datasets
from 1 to 16
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Figure 3.7: Overall accuracy and training time for the datasets considered in the empirical analysis, datasets
from 17 to 32
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Dataset ∆Acc SpeedUp
AFHQ +0.10% 94.70×
Beans +0.90% 116.3×

Best artworks +3.10% 65.90×
Boat types +0.50% 131.5×

Caltech-101 +1.10% 94.00×
Cassava −4.50% 44.00×

Cats vs Dogs −0.20% 60.00×
Chest xray +0.50% 62.40×
CIFAR10 −2.80% 28.90×

CIFAR100 −3.70% 12.10×
Citrus leaves +7.30% 109.5×

Colorect. histology +0.50% 89.20×
Deep weeds −9.10% 57.70×

DTD +2.90% 82.80×
EuroSAT −2.40% 39.10×

FGVC Aircraft −10.6% 60.90×

Dataset ∆Acc SpeedUp
Football vs Rugby +1.90% 124.8×

Gemstones −0.20% 147.6×
Horses or Humans +5.20% 131.3×
iCub World subset −1.00% 32.60×

Indian Food −1.10% 122.6×
Make up +1.70% 102.5×
Malaria −2.00% 46.80×

Meat Quality +0.00% 163.6×
Oxford Flowers102 +4.50% 96.30×

Oxford-IIIT Pets +4.50% 94.60×
Plankton +0.00% 75.50×

Sars Covid −0.40% 107.0×
Stanford Cars −15.7% 76.90×
Stanford Dogs +5.20% 22.50×

Tensor�ow �owers −1.40% 62.40×
Weather +0.90% 152.4×

Table 3.2: Quantitative results about the analysis on di�erent datasets. The second column reports the
∆Acc = Acctop−tuning − Accfine−tuning. The third one refers to the corresponding speed-
up obtained when using the top-tuning procedure(e.g. on the AFHQ dataset the top-tuning
training was 94.70 times faster).

Lastly, although in this work we do not focus on inference time, we report for completeness that
the two pipelines needed similar time for a prediction.

3.5.2 Analysis with different head classifiers

To test the generality of our approach we replace the fast kernel classi�er with two head classi�ers:
a shallow net and a ridge regression classi�er.
The training procedure is similar to the one presented in section 3.4. For the shallow net, we con-
sider just two con�gurations with default Stochastic Gradient Descent (SGD) and two di�erent
learning rates: l = {0.1, 0.01}.
The training time reported in the results is the sum of the computational time required for the
two training instances. Notice that this architecture is identical to the �ne-tuning one. The main
di�erence lies in which part of the model is tuned. The shallow nets update only the parameters of
the last three fully connected layers while the �ne-tuning one update all the weights of the model.
For the Ridge regressor, we use three di�erent con�gurations corresponding to three di�erent val-
ues of the regularization termα = {101, 10−1, 10−3}. Here again, the training time reported in
the results is the sum of the computational time required for the three training instances.
In Figure 3.8 we compare, in terms of accuracy, the �ne-tuning model with both the shallow
net(left) and the ridge regressor(right) as external classi�ers. The obtained results are similar to
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the ones shown in Figure 2. Most of the datasets lie around the diagonal for both shallow net
and ridge as an external classi�er, showing similar accuracy between �ne-tuning and top-tuning
methods.

In Figure 3.9 we compare, in terms of training time, the �ne-tuning model with both the shal-
low net(left) and the ridge regressor(right) as an external classi�er. With the fast kernel classi�er
as an external classi�er, the average speed-up is 84.64± 38.97. Instead, by using a shallow net as
an external classi�er we obtain an average speedup of 40.74± 12.43.
The speed-up is instead 16.37± 9.57 if we use the ridge regressor as external classi�er.
These results show that regardless of the choice of external classi�er, top-tuning con�rms a train-
ing time speed-up of at least one order of magnitude w.r.t. the �ne-tuning pipeline. Among them,
the fast-kernel model reports a signi�cant boost w.r.t. to its competitors.

3.5.3 Impact of pre-trained model

To weigh the dependency of the results on the pre-trained architecture we extend the results ob-
tained with DenseNet201 on �ve state-of-the art pre-trained models: (i) E�cientNetB0 [280]; (ii)
InceptionResNetV2 [277]; (iii) MobileNetV2[105]; (iv) ResNet152[91]; (v) Xception[41].
We test these models on four di�erent datasets where: �ne-tuning has only marginal bene�ts
(Caltech-101, CIFAR100), the top-tuning approach provides better results w.r.t. �ne-tuning (DTD),
and �ne-tuning outperforms top-tuning approach (Stanford Cars).
The training procedure is analogous to the one performed for DenseNet201 with 5 additional
pre-trained models and a subset of 4 datasets, performing 600 additional training processes.
Figure 3.10 shows the overall results. Each color refers to a di�erent target dataset, each symbol
corresponds to a di�erent pre-trained neural network.

Di�erent pre-trained neural networks show a similar trend to the one obtained by DenseNet201.
Figure 3.10(Left) shows that on datasets where the drop between �ne-tuning and top-tuning was
marginal (e.g. Caltech, DTD) using di�erent pre-trained model results in an analogous behavior.
Similarly, on a dataset where such the drop was greater (e.g. Stanford Cars) using di�erent pre-
trained results in a similar performance deterioration. Figure 3.10(Right) con�rms our �ndings
on the matter of training time speedup, showing that the top-tuning approach is highly faster
w.r.t. the �ne-tuning one.
Table 3.3 summarizes the results obtained both in terms of accuracy and training time speed-up.
It shows quantitatively that di�erent pre-trained networks behave similarly on the same dataset
w.r.t. DenseNet201. Moreover, it shows that the top-tuning approach is approximately 70 times
faster w.r.t. the �ne-tuning one. Such results suggest that our �ndings are low-dependent from
the pre-trained neural network adopted.

Preliminary resultswith transformers In the last few years a new generation of mod-
els, called transformers, has been introduced. Such models are usually composed by hundreds of
million of parameters, obtaining state-of-the-art performances. Commonly, they are pre-trained
on an extended version of ImageNet called ImageNet21k[239]. In the following experiments we
replace the �rst convolutional part of the pipeline with a Vision Transformer(ViT-L/16) as pre-
sented in [60]. With 32 target datasets for the top-tuning approach and 2 target datasets for the
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Figure 3.8: Overall accuracy results on di�erent target datasets with shallow net and ridge as external clas-
si�ers w.r.t the �ne-tuning model. (Top) Accuracies obtained over di�erent target datasets by
using a shallow net as external classi�er. (Bottom) Accuracies obtained over di�erent target
datasets by using ridge regressor as external classi�er.
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Figure 3.9: Overall speed-up results on di�erent target datasets with shallow net and ridge as external classi-
�ers w.r.t the �ne-tuning model. (Left) Speed-up was obtained over di�erent target datasets by
using a shallow net as an external classi�er. (Right) Speed-up was obtained over di�erent target
datasets by using a ridge regressor as an external classi�er.

�ne-tuning one, we perform 650 additional training processes.
For the top-tuning pipeline, we were able to replicate our analysis on all 32 target datasets. We
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Figure 3.10: Overall results on di�erent pre-trained models. (Left) Accuracies were obtained over di�erent
target datasets with di�erent pre-trained models. (Right) Speed-up obtained by the top-tuning
model w.r.t the �ne-tuning one for each dataset and for each pre-trained model.

report, due to longer inference time, information about the features extraction training time in
Table 3.4
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Caltech-101 CIFAR100 DTD Stanford Cars
∆Acc SpUp ∆Acc SpUp ∆Acc SpUp ∆Acc SpUp

DenseNet201 +1.10% 94.00 −3.70% 12.1 +2.90% 82.80 −15.7% 76.90

E�centNetB0 −5.60% 109.3 −12.1% 8.70 −2.60% 76.80 −21.9% 73.40

Inc.ResNetV2 −2.80% 85.10 −11.1% 10.2 −1.50% 126.3 −18.3% 137.6

MobileNetV2 +14.3% 39.40 +0.10% 7.90 +23.5% 89.80 −4.3% 48.10

ResNet152 +2.90% 82.60 −5.10% 13.7 +2.90% 150.2 +7.2% 78.90

Xception −4.00% 67.10 −15.4% 10.3 −3.90% 81.00 −22.7% 98.10

Table 3.3: Analysis on di�erent pre-trained models: variation in accuracy (∆Acc) and speedup (SpUp),
between �ne-tuning and top-tuning.

Dataset Duration image/secs
Beans[147] 60.56 19.26

Best artworks[281] 300.74 26.26
Boat types[46] 147.80 8.90

Caltech-101[66] 192.79 31.56
Cassava[198] 250.73 30.09

Cats vs Dogs[65] 523.76 39.97
CIFAR10[142] 889.63 56.20

CIFAR100[142] 734.28 68.09
Citrus leaves[236] 51.74 10.32

Colorectal hist [124] 219.60 20.49
Deep weeds[205] 264.70 59.53

DTD[44] 212.03 17.73
EuroSAT[92] 382.29 63.56

FGVC Aircraft[178] 137.49 48.49
Footb vs Rugby[77] 151.11 14.58

Dataset Duration image/secs
Gemstones[37] 207.24 12.40

Hors or Hum[196] 134.51 7.64
iCubWorld subset[211] 1317.19 68.33

Indian Food[227] 213.97 16.83
Make No Make[275] 203.83 6.65

Malaria[234] 393.19 63.08
Meat quality[290] 199.56 8.55

Oxford Flowers[203] 163.09 12.51
Oxford-IIIT Pets[209] 152.27 24.17

Plankton[213] 187.14 24.05
Sars Covid[267] 206.64 10.80

Stanford Cars[141] 148.57 54.81
Stanford Dogs[131] 211.30 56.79

Tensor�ow Flowers[282] 222.31 14.86
Weather[271] 147.12 6.88

Table 3.4: Per dataset Vision Transformer inference time

We report the results in Table 3.5, where ∆Acc = AccTransform − AccConv is the accuracy
gain of transformer w.r.t. the usual DenseNet201. On average ∆Acc = 4.58%±5.36% showing
good improvements by using the pre-trained transformer as a features extractor.

For the �ne-tuning approach, due to long training times, we could not replicate the analysis on all
the datasets. We carried out the whole analysis on two small datasets (Citrus Leaves and Oxford
Flowers) where we reached an absolute accuracy of 97.5% and 99.1%, respectively.
If we compare these values with the ones obtained by the top-tuning pipeline (98.3% and 99.5%,
respectively) the results con�rm the marginal accuracy bene�ts of �ne-tuning a transformer model.
On the training time, we obtain an even more remarkable speedup(226.19× and 185.05×, re-
spectively).
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Dataset ∆Acc
AFHQ −0.03%

Beans 3.91%

Best art 10.1%

Boat 7.89%

Cal101 1.78%

Cassav 8.07%

Cat Do 1.14%

Ch xra −0.65%

Dataset ∆Acc
CIF10 5.92%

CIF100 14.56%

Citr lea 2.67%

Col hist 0.72%

Deep w 11.1%

DTD 9.98%

EuSAT 0.87%

FG Air −9.40%

Dataset ∆Acc
Foot Ru 8.98%

Gemst 6.08%

Hor Hu 0.00%

iCub 0.12%

Ind Fd 13.0%

MkNoM 7.02%

Malaria 1.84%

Meat qu −0.63%

Dataset ∆Acc
Oxf Flo 12.0%

Oxf Pet 5.75%

Plankt 0.00%

Sa Cov −0.96%

St Cars 4.72%

St Dog 13.7%

Ten Fl 6.98%

Weath −0.53%

Table 3.5: Analysis on the transformer model for the top-tuning pipeline. ∆Acc = AccTransform −
AccConv is the accuracy gain of transformer model w.r.t. convolutional model

3.5.4 The importance of the pre-training dataset.

We now explore the dependency of the results on the pre-training dataset.
Speci�cally, we �x the pre-trained neural network architecture (DenseNet201), and we investigate
the bene�t of choosing ImageNet in terms of its size (number of images and classes) and image
quality. To this purpose we consider three alternative pre-training datasets:

• CIFAR100: we consider CIFAR100 as a simpli�ed version of ImageNet. With this dataset,
we test the impact of reduced number of images, classes and image size.

• ImageNet100: we extract an ImageNet subset with the same number of images and classes
of CIFAR100. To make this dataset as more similar as possible to CIFAR100 in terms
of label semantic: 75% of labels selected from ImageNet is the same in CIFAR100, 15%
of them are similar and 10% are di�erent. With this dataset, we test the impact of image
quality on the obtained results.

• ImageNet 50k: we extract an ImageNet subset that contains all the classes in ImageNet
with the same number of data points contained in CIFAR100, that is 50k. The obtained
dataset has 1000 classes with only 50 points per class. With this dataset, we test how the
total number of classes a�ects the obtained results.

First, we train a DenseNet201 model from scratch on each of the three pre-traning datasets.
Then, we apply the two investigated pipelines as described in section 3.4 on �ve target datasets:
one of the most di�cult and one of the easiest datasets for both approaches (DTD and CIFAR10,
respectively), one where top-tuning approach outperforms �ne-tuning (Citrus Leaves) and the
opposite case (Deep Weeds). Lastly, we consider the �ne-grained Oxford Flowers 102. With �ve
target datasets, and three di�erent pre-training, we perform 450 additional training instances.

Figure 3.11(Left) refers to top-tuning accuracy for each pre-train. ImageNet pre-training brings
to the best results on the target datasets. ImageNet 50k is the best alternative, suggesting that the
number of classes for the pre-training dataset has a great impact on the top-tuning approach. The
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Figure 3.11: Overall results on di�erent pre-trains. For each target dataset, each color represents one of the
four di�erent pre-trains datasets. (Left) Accuracies obtained by top-tuning approach (Right)
Accuracies obtained by �ne-tuning approach.

only exception corresponds to CIFAR10, where CIFAR100 corresponds to the best pre-train.
This behavior depends on CIFAR10 being de facto a CIFAR100 subset.

Figure 3.11(Right) refers to �ne-tuning accuracy for each pre-train. ImageNet pre-training cor-
responds to the best accuracy. The di�erence between the other pre-training con�gurations is
marginal. This is probably due to the �ne-tuning training procedure, which mitigates the weight
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Source
Target↓ CIFAR10 Citrus Leaves Deep Weeds DTD Oxf Flow

To
p-

T
un

. CIFAR100 7.30% 4.7% 15.2% 26.3% 24.0%

ImageNet100 16.8% 6.7% 11.1% 22.0% 24.3%

ImageNet 50k 12.7% 1.0% 5.70% 17.5% 13.9%

Fi
ne

-T
un

. CIFAR100 4.9% 0.0% 10.9% 18.3% 12.6%

ImageNet100 6.3% −0.6% 6.7% 13.0% 13.0%

ImageNet 50k 5.3% 1.7% 5.5% 13.1% 16.7%

Table 3.6: Accuracy drops for pre-training alternative to ImageNet. Each column represents a di�erent tar-
get dataset, each row a di�erent pre-train source. The reported value corresponds to the accuracy
drop w.r.t. the original ImageNet pre-training. The lower the value, the better.

of di�erent pre-training. Table 3.6 summarizes the quantitative results in terms of accuracy drop
w.r.t. the original ImageNet pre-training.

3.6 Discussion

A popular transfer learning solution to deal with the scarcity of training data is �ne-tuning a pre-
trained model. However, �ne-tuning may still require signi�cant computational resources, in
terms of data need, training time, GPU-CPU involvement, and memory usage. This is due to
back-propagation and the potentially huge amount of parameters involved.
An alternative solution, often dismissed by the research community as “too naif", consists in
adopting a pre-trained model as-it-is as a features extractor, coupling it with an external head clas-
si�er. In this chapter we discussed the bene�ts of this simple alternative, we refer to as top-tuning
approach, in particular when a fast kernel head classi�er is adopted. To support our claim, we re-
ported an extensive experimental analysis involving 32 target datasets, and 99 di�erent settings,
through 3460 distinct training processes.
Most of our experiments, con�rm that �ne-tuning has only marginal bene�ts, w.r.t. top-tuning
approach. In 60% of our experiments, in fact, ∆Acc between �ne-tuning and top-tuning is in
range [−2.5%,+2.5%]. Furthermore, using a pre-trained model just as a feature extractor corre-
sponds to a huge reduction in terms of training time, even from hours to a few minutes in di�erent
scenarios. Finally, our results showed that the marginal bene�t of �ne-tuning is low dependent
on the neural network architecture used as a pre-trained model. On the other hand, the choice of
an appropriate pre-training dataset has a signi�cant impact on the obtained accuracy, especially
in the case of top-tuning. The obtained results suggest that the variety of data plays a crucial role.
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In the previous chapter, we compared two di�erent machine learning models, evaluating both
their accuracy and training time. We have seen that is possible to make the training process e�cient
with a limited impact on the accuracy performance. In this chapter we focus on data representa-
tion e�ciency. To address this problem, as a reference task we select image clustering, a standard
unsupervised problem, focusing on plankton images. A well-known problematic in clustering is
the increasing hardness of the problem when it deals with high-dimensional data. Finding the
optimal solution of a clustering problem is NP-hard and it is very costly or nearly impossible to
work with samples having thousands of dimensions. Indeed, for a clustering algorithm is impos-
sible to deal directly with images that, even with a low resolution, can have dozen of thousands of
dimensions. To this purpose we implement an unsupervised pipeline that projects the input to a
latent space with reduced dimension, making the clustering operation doable. We test our pipeline
e�ectiveness in the plankton monitoring context where operating in an unsupervised manner is
crucial.
Monitoring plankton populations in situ are fundamental to preserve the aquatic ecosystem.
Plankton microorganisms are in fact susceptible to minor environmental perturbations, that can
re�ect into consequent morphological and dynamical modi�cations. Nowadays, the availability
of advanced automatic or semi-automatic acquisition systems has been allowing the production
of an increasingly large amount of plankton image data. The adoption of machine learning al-
gorithms to classify such data may be a�ected by the signi�cant cost of manual annotation, due
to both the huge quantity of acquired data and the numerosity of plankton species. To address
these challenges, we propose an e�cient unsupervised learning pipeline to provide accurate clas-
si�cation of plankton microorganisms. We build a set of image descriptors exploiting a two-step
procedure. First, a Variational Autoencoder (VAE) is trained on features extracted by a pre-trained
neural network. We then use the learned latent space as an image descriptor for clustering.
We compare our method with state-of-the-art unsupervised approaches, where a set of pre-de�ned
hand-crafted features is used for the clustering of plankton images. The proposed pipeline outper-
forms the benchmark algorithms for all the plankton datasets included in our analysis, providing
better image embedding properties. This chapter is organized as follows. In section 4.1 we provide
the motivations that inspired our research on this topic. In section 4.3, we outline and review the
proposed pipeline in detail and some common architectures that are used in our study. In sec-
tion 4.4, we describe the datasets included in our analysis, present the experimental setup and
discuss our results. In section 4.5 we lay out our conclusions and discuss future developments.
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4.1 Motivations

Plankton is a collection of aquatic microorganisms �oating passively in the water. It plays a big
role in the marine ecosystem. Plankton is indeed at the basis of the aquatic food chain, with phy-
toplankton being estimated to have produced approximately 50% of the total oxygen in our at-
mosphere [17]. Recently, it has been proved that local or global perturbations of the aquatic en-
vironment, either natural or man-caused, are profoundly impacting both the composition and
dynamics of plankton populations [28].
As stated in [212], plankton microorganisms react to even minimal changes in the environment
with morphological and dynamical modi�cations, so they can be regarded as biosensors, re�ect-
ing the overall health of the oceans. Thus, detecting and studying plankton population in situ is
paramount to protect marine ecosystems [173].
Recently, the development of advanced tools for automatic high-throughput in situ microscopy
allowed real-time observation of plankton species [72, 214]. Such systems acquire a huge amount
of image data for which manual identi�cation is impractical [269]. Hence, machine learning has
nowadays become one of the most studied approaches for the characterization of plankton data
[20, 24, 25, 49, 107, 212, 254, 258, 270, 321]. In particular, there has been a surge in interest towards
models based on arti�cial neural networks (ANNs), due to their successes in big data problems
and their high expressive power, speci�cally in the form of convolutional neural networks (CNNs)
[50, 53, 174, 230, 235].
A central element in the process of characterizing plankton data is feature selection. The two
main approaches are represented by hand-engineered features, such as geometric or Fourier fea-
tures [319, 321], and deep features, typically based on deep CNNs [50, 286]. Recent works [156,
173, 206] have also explored the possibility to use pre-training and transfer learning (both in- and
out-of-domain) to enhance the expressivity of the models and alleviate the computational cost
associated with the training of deep CNNs. In [64], the authors demonstrate how context meta-
data, such as temperature, location, and salinity, improves the performance of classi�ers. The lit-
erature is however largely dedicated to supervised approaches, for which accurate models can be
obtained at the high cost of providing manually annotated data. Besides the development of solu-
tions aimed at automatizing the labeling procedures [110, 257], research on unsupervised models
[214] is crucial to avoid bottlenecks in our ability to process information [180].

We propose a new unsupervised approach for the characterization of plankton images. There
are more than 4000 existing plankton species, and many of them are very similar, from a morpho-
logical point of view, making this problem very challenging[215].
We leverage neural network models that are pre-trained on large general-purpose datasets, such as
ImageNet, to extract expressive feature maps in an e�cient way, without �ne-tuning. We then use
an encoder-decoder network architecture to perform dimensionality reduction, producing low-
dimensional embedded features that can then be fed to a clustering algorithm.
We tested our pipeline on three plankton datasets with di�erent characteristics, showing that our
results surpass state-of-the-art approaches where hand-crafted features (i.e., geometric and tex-
ture descriptors) are engineered and used for clustering. Speci�cally, the main contributions of
this work are:
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1. A new variational autoencoder-based methodology for e�cient unsupervised learning, lever-
aging the variational autoencoder low dimensional and regular latent space. A key novelty
consists in using pre-trained features as informative input to the variational autoencoder,
to obtain high-quality descriptive features. Our �ndings con�rm that variational autoen-
coder can be used not only for generation purposes but also to discover patterns from data
in an unsupervised fashion.

2. We show that the high-quality low-dimensional embedding produced by our approach ap-
pears to be informative and allows the e�ective usage of unsupervised machine learning
algorithms, such as k-means or Gaussian mixture models, taming the curse of dimension-
ality.

3. We further show that the produced embedding also leads to high accuracy when used as
compressed input to supervised models, which can be trained quickly and on limited re-
sources.
The proposed pipeline is e�cient and ideal for in situ analysis as well as for o�ine investi-
gations of plankton data.

4.2 Background

Dimensionality reduction: in the machine learning �eld, the dimensionality reduction
process consists in reducing the number of features describing some data. It can be a set of pow-
erful techniques in many situations that require low dimensional data such as data visualization,
storage, or even when we want to reduce the computation. Such a reduction can be done in dif-
ferent ways. Two common methodologies to perform it are feature selection[35] and features ex-
traction[248].
The �rst approach corresponds to producing a new description of our data by selecting just a
subset of the original features. Usually, feature selection techniques are categorized into three dif-
ferent groups: wrapper methods, filter methods, and embedded methods.
The second approach consists in producing a set of new features based on the old ones. As we were
mentioning a common scenario for dimensionality reduction is data visualization. Some well-
known techniques on this topic are: t-distributed stochastic neighbor embedding(t-SNE)[176],
Principal Component Analysis(PCA)[218], and Kernel-PCA[256].
For instance, the PCA idea is to build a set of new independent features that are a linear combina-
tions of the old features. The problem we want to optimize is to project the data on the subspace
de�ned by these new features, corresponding to an orthogonal basis of new features, and we want
the new samples in such space to be as close as possible to the initial data according to some dis-
tance measure. We could say that Principal Component Analysis will search for the best linear
subspace of the initial space such that the error of approximating the data by their projections on
this subspace is as small as possible.

Autoencoders autoencoders [99, 140] general idea is simple, consisting in setting an encoder
and a decoder as neural networks. The procedure consists in learning an optimal encoding-decoding
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Figure 4.1: The scheme of an autoencoder.

scheme via an iterative minimization process. In other words, autoencoders are unsupervised ma-
chine learning models trained to reproduce their inputs while learning a lower dimensional latent
representation. Therefore, at each iteration we feed the autoencoder architecture with data sam-
ples, comparing the encoded-decoded output with the initial data. Then, we backpropagate the
error through the architecture to update the weights of the networks. Intuitively, the autoencoder
architecture creates a bottleneck between the encoder and the decoder for data. This way it en-
sures only the main structured part of the information can go through and be reconstructed by
the decoder.
Concretely, autoencoders address this task by learning an encoder function e which maps input
data x ∈ Rd in a latent spaceZ ⊆ Rp with 0 < p < d and a decoder function dwhich maps a la-
tent representation z = e(x) back to the original input x. These maps are typically parametrized
by neural networks. Let us denote the output with x′ = d(e(x)), autoencoders are then trained
to minimize the reconstruction loss

l(x, x′) =
∥∥x− x′∥∥2

= ‖x− d(e(x))‖2 (4.1)

They can be interpreted as non-linear dimensionality reduction models.
In the special case where both encoder and decoder have only one layer without non-linearity, we
simply have a linear transformation that can be expressed as matrices. This special case is strongly
tied to the PCA as we are looking for the best linear subspace to project data on with as little
information loss as possible.
We can show the architecture of a generic autoencoder in Figure 4.1

Once the model has been trained, we have both an encoder and a decoder capable of compress-
ing the input x to a latent space with a �xed dimension. Usually, we would like to have a way to
produce some new content. We could suppose that, if the latent space is regular enough after the
training procedure, i.e. well "organized" by the encoder, we could sample a random point from it
and decode such a sample to get new content.
However, the regularity of the latent space described by autoencoders is di�cult to ensure and
depends on the distribution of the data, the latent space dimension, and the encoder architecture.
In general, we do not have any guarantees that the encoder will organize the latent space in a reg-
ularized way that can be exploited to generate new points. More often the encoder will just try to
separate the samples without taking into account the data structure, producing a severe over�t-

80



4.2 Background

Figure 4.2: Di�erences between a non-regular and a regular latent space.

ting situation in general. Indeed, autoencoders provide good performances in data compression,
but they cannot be used to generate new instances since they do not impose any structure on the
latent space, see Figure 4.2.
Moreover, the over�tting phenomenon can be explained mathematically by considering again
Equation 4.1 where only the reconstruction loss is considered without any kind of regularization.
Such a situation might lead to over�tting.

VariationalAutoencoder. variational autoencoders [134] can be seen as a way to improve
the structure of the latent space by encoding the input into a multivariate latent distribution.
Similarly to an autoencoder, its variational counterpart is a model composed of both an encoder
and a decoder. The model, just like we showed in Equation 4.1 is trained to minimize the recon-
struction error obtained by comparing the encoded-decoded data x′ and the initial data x. How-
ever, in order to introduce regularisation of the latent space, we can slightly modify the encoding-
decoding process: instead of mapping an input as a single point in the latent space, we encode it
as a distribution over the latent space.
In principle, we could map our input x to an arbitrary desired distribution, i.e. to the parameters
de�ning such distribution. In real scenarios, more concretely, the encoder maps each input to a
multivariate Gaussian distribution q(z|x) with mean and variance parametrized by neural net-
works. In a few lines, we are going to see that the loss used to train the model contains a quantity
called Kullbach-Leibler diveregence computing a mathematical divergence measure between two
distributions. When the distributions involved are Gaussian, the Kullbach-Leibler diveregence
has a closed form, i.e. it can be directly expressed in terms of the means and covariance matrices
of the two distributions.
Overall with a standard variational autoencoder, we are mapping our inputx to a latent space such
that the probability of sampling a point z given x as input is modeled by a gaussian distribution

q(z|x) = G(µ(x), σ(x)). (4.2)

The reason to encode an input as a distribution instead of a single point lies in the possibility to
express very naturally the latent space regularisation: the distributions returned by the encoder
are enforced to be close to a standard normal distribution. We will see in Equation 4.3 that this
condition is ensured by a term included in the loss function.
The sample from the latent distribution z ∼ q(z|x) is then decoded and the resulting output
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Figure 4.3: The scheme of a variational autoencoder.

x′ = d(z) is used to compute the error. The loss function includes reconstruction terms, as in
the AE loss, pushing the model to be as performant as possible. Moreover, a regularization term
tends to organize the latent space by forcing the model to return a distribution close to a stan-
dard normal distribution. Such regularization term is given by the Kullback-Leibler divergence
between the encoded distribution and the prior on the latent representation, assumed normal
p(z) = N (0, I). The total loss reads as

l(x, x′) =
∥∥x− x′∥∥2

+DKL(G(µ(x), σ(x)),N (0, I)). (4.3)

In order to allow error backpropagation through the encoder, the sampling step is expressed via
the reparametrization trick:

z = µ(x) + εσ(x) ε ∼ N (0, I). (4.4)

Ultimately, it is the regularization term that forces the model to learn meaningful latent space rep-
resentations. Without it, the variational autoencoder would try to simply reconstruct the input as
closely as possible, for instance, by mapping each input to a delta distribution in the latent space,
similarly to an AE, see Figure 4.2. See Figure 4.3 for a schematic representation of a variational
autoencoder architecture. A more detailed and formal discussion can be found in [134, 135].

Clustering accuracy In literature, the quality of a clustering algorithm can be evaluated
with di�erent metrics[13] such as purity, normalized mutual information, and rand index. In our
work, we decided to use purity, de�ned as

purity(Ω, C) =
1

N

∑
k

max
j
|wk ∩ cj |, (4.5)

where Ω is the set of clusters andC is the set of ground-truth classes. Every cluster is then associ-
ated with the most represented class.
A purity value of one means that clusters perfectly overlap with the ground truth. An instance of
purity computation is shown in Figure 4.4. In the �rst cluster, the most frequent class is the blue
one, with �ve instances. In the second cluster, the prevalent class is the purple one, with four sam-
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Figure 4.4: An instance of purity computation. First cluster purity corresponds to the number of samples
from the most frequent class, i.e. is equal to �ve. The second cluster purity is equal to four. The
last cluster purity is again equal to �ve. By summing up the cluster purities and normalizing by
the total amount of samples we obtain purity = 2

3

ples. In the last cluster, the most frequent class is the yellow one, with four samples. Summing up
the per-cluster purity we obtain a value of 14. Then we can normalize the obtained value, dividing
by the total number of samples, equal to 21. Overall we obtain a purity equal to purity = 14

21 = 2
3 .

Purity decreases when samples from the same class are spread among di�erent clusters, or sep-
arate clusters are assigned to the same class. In plankton image analysis, several species have nearly
indistinguishable morphological features. Thus, the clustering algorithm can potentially group
such species into the same cluster. In our results, we refer to the number of ground truth species
overlapping with the same clusters as number of overlaps.
A number of overlaps equal to zero mean that the correspondence between ground truth species
and the cluster is 1:1, meaning that each cluster represents a unique class (i.e., there are no two or
more species that mostly overlap with the same cluster).
We adopted the customized purity implementation described in [214], where the number of over-
laps is introduced and used to evaluate clustering performances together with the purity.

Pre-training as we saw in the previous chapter, in a typical training scenario, the weights of
a model are adjusted, starting from a random initialization, to optimize a measure that is deter-
mined by the task at hand, such as accuracy for classi�cation, over a validation set. However, the
quality of the results can be impacted by the scarcity of data or by the computational cost of train-
ing, especially in the context of deep learning.
One common solution to this kind of problem is represented by the use of pre-trained models.
The goal is to exploit large state-of-the-art models, such as DenseNet[108], ResNet[277], Xcep-
tion[41] or transformers[60] in which the weights have been already optimized for a similar task.
Usually, the pre-training is performed on a large and general-purpose dataset, such as the Ima-
geNet dataset [51]. A pre-trained model can then be used as is, possibly embedded with frozen
weights in a larger model, or by �ne-tuning it, hence further optimizing its weights on a speci�c
task. In our study, we use a pre-trained model, DenseNet201 [108] as a feature extractor, with-
out �ne-tuning. This is a cheap and e�cient way to produce better representations of our input
images, as it only involves an inference step.
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Figure 4.5: The proposed pipeline is made by three steps: Image Pre-processing, Features Extraction, Fea-
tures compression, and Clustering

4.3 Methodology

Given the above discussion, in this section we �rst describe the proposed pipeline we utilized in
our work. Then we present technical details about the conducted experiments. Lastly, we report
details about the datasets used in the empirical analysis.

Pipeline: we �rst describe our pipeline, which is schematically represented in Figure 4.5. It
includes the following steps:

1. Pre-processing: images are resized to the same size of 128×128 pixels. Then are normalized
to be compatible with the pre-trained neural network used in the subsequent step.

2. Features extraction: pre-processed images are given as input to a deep neural network pre-
trained on the ImageNet dataset[51]. The output of this step is a high-dimensional feature
vector for each image.

3. Dimensionality reduction and clustering: feature vectors are reshaped and used as input to
train a convolutional Variational Auto Encoder (VAE). The learned latent space is exploited
to map input features into a low-dimensional embedding that is �nally fed to a clustering
algorithm.

ExperimentDetails: in our experiments, the entire pipeline is implemented in PyTorch [217].
Feature extraction is performed using DenseNet201, pre-trained on ImageNet without further
�ne-tuning. The network has approximately 20M parameters and achieves a top-5 accuracy of
0.9446 on the ImageNet validation set [108]. Input images are resized to 128 × 128 pixels and
normalized accordingly to DenseNet201 speci�cation. With our input format, DenseNet201 pro-
duces an output shape given by (channels, height, width) = (1920, 4, 4). The output is then re-
shaped to obtain higher performances with the convolutional (V)AE. We performed several tests,
noticing better performances with a lower number of input channels and a higher width and
height compared to the original output shape. Thus, we considered two candidate shapes: the
�rst one with an approximately homogeneous distribution among channels, width, and height
r1 = (30, 32, 32) and another one with a lower number of channels and a corresponding higher
width r2 = (3, 32, 320). We report in section 4.4 the results obtained with both shapes. The
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Figure 4.6: Sample images from seven di�erent classes included in the datasets considered for our analysis.
(Top): samples from the lensless dataset. (Bottom): Samples from the WHOI dataset.

AE and variational autoencoder used to produce our results are composed of an encoder made of
three convolutional layers. The decoder is implemented with three convolutional transpose layers.
The variational autoencoder has two additional dense layers after the encoder, to parametrize the
mean and the log variance of the multivariate distributions in the latent space. AE and variational
autoencoder are trained for a total of 100 epochs using SGD and Adam optimizer respectively.
Learning rate is initialized to 0.001 for both optimizers with an exponential learning rate decay
for SGD. Batch size is set to 64. Hyperparameters were selected with a cross-validation proce-
dure, adopting a k-fold approach (k=5). We used the scikit-fuzzy [303] implementation of Fuzzy
K-Means [63] for clustering the latent space data. Results in Table 4.5 are obtained using the
sklearn implementation of Kernel ridge [252] and implementing a neural network classi�er in
TensorFlow [1]. The neural network is composed of 2 hidden dense layers of 256 and 128 neu-
rons. It is trained for 100 epochs, with a batch size of 32, and using stochastic gradient descent
(SGD) optimizer with a learning rate of 0.01. For the kernel ridge, we used a Gaussian kernel.
Hyper-parameters are tuned using grid search maximizing the classi�cation accuracy.

Datasets details: We considered three datasets for the evaluation of the proposed pipeline.
In this section, we will provide few details on each of them. See Figure 4.6 for an example of the
included plankton species.

• Lensless: the Lensless microscope dataset was introduced in [214]. It consists of images ac-
quired using a lensless microscope, extracted from videos. More precisely is a collection
of videos containing ten freshwater species of plankton captured with a lensless micro-
scope[326]. Each video is ten seconds long and contains one or more species. As the method
is unsupervised, no labels are provided to the classi�er during training It includes 10 classes,
with 640 color images each. Figure 4.6(top) shows sample images for seven classes included
in the dataset.

• WHOI 40: this dataset was released in [214] and it is a subset of the Woods Hole Oceano-
graphic Institution (WHOI) Plankton Dataset1 (years 2011-2014). See Figure 4.6(bottom)
for an example of seven classes included in the dataset.

1https://hdl.handle.net/10.1575/1912/7341
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The WHOI provides a public dataset comprising millions of still monochromatic images
of microscopic marine plankton, collected in situ by an automated submersible imaging-in-
�ow cytometry exploiting an Imaging FlowCytobot (IFCB). To use this dataset as a bench-
mark to test our unsupervised classi�er, we extract a collection of 40 species of plankton
(100 images per species, randomly selected), using both the segmented binary image and
the portion of the gray-scale image containing the plankton cell body.

• WHOI 22: this dataset was introduced in [269], and contains images extracted from the
WHOI dataset. The authors, after a manual inspection of WHOI dataset, de�ned 22 ex-
plicit categories that represent subjective consideration of taxonomic knowledge, ecologi-
cal perspective, and practical issues regarding groupings that can be feasibly distinguished
from morphology visible in the images. Many categories correspond to phytoplankton taxa
at the genus level or groups of a few morphologically similar genera. Overall it includes 22
species, 300 grayscale images each.

4.4 Experiments

We applied our pipeline to the three plankton datasets, described in the previous section. First,
we veri�ed the impact on the models’ performances of the type of input used for training. To do
this, we compared both AE and variational autoencoder trained either on the original images or
on the pre-trained features reshaped as described in previous section. We performed multiple ex-
periments considering �ve di�erent latent space sizes, evaluating the results in terms of clustering
purity and a number of overlaps (see Section 4.3) on the available test set, for each of the consid-
ered datasets. We specify that, since WHOI 40 is not originally distributed with a speci�c test set,
we therefore performed an 80:20 train/test split as a preliminary step for this dataset. A purity of
one with zero overlaps corresponds to clusters perfectly agreeing with the ground truth.

To prove the robustness of our method, we adopted a k-fold approach (k=5) repeating each ex-
periment �ve times, with di�erent train and validation splits. We then report mean and standard
deviation for the purity and the number of overlaps on the test set for each dataset, in Tables 4.1,
4.2, 4.3.

Table 4.1 shows our results on the Lensless dataset. As we can observe, using pre-trained features
signi�cantly increases the purity with an average improvement of 30% over the original images,
considering both types of reshaping.
It is possible to appreciate such improvement in Figure 4.7, where an instance of learned latent
space, with and without, pre-trained features is shown. Thus, motivating the adoption of pre-
trained features in our pipeline. Moreover, using an input feature reshape with three channels
r2 = (3, 32, 320) results in a slight improvement over the case with more channelsr1 = (30, 32, 32).
It is worth noticing that the variational autoencoder generally outperforms the AE for all the con-
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sidered inputs and latent space sizes, withZ = 500 giving an average test purity of 0.98 without
any overlap.

Figure 4.7: t-SNE of the latent space learned by a variational autoencoder on the lensless dataset. (Left)
The learned latent space when we directly used as input the images

Table 4.2 and Table 4.3 show our results on the WHOI 40 dataset and the WHOI 22, respec-
tively. These two datasets pose di�erent challenges. The WHOI 40 includes a relatively high num-
ber of classes, with a more coarse granularity when compared to WHOI 22. Moreover, WHOI 22
includes images that contain multiple plankton cells, as well as a class for heterogeneous detritus
(see, for instance, the last two images on the right in Figure 4.6(bottom)). In Table 4.1, 4.2 and
4.3, the notation FEr1/2 refers to pre-trained features reshaped as r1/2.
As we can observe, using an input feature reshape with three channels r2 = (3, 32, 320) results
now in a signi�cant improvement for variational autoencoder over the case with more channels
r1 = (30, 32, 32).
Generally, the best performances correspond to a latent space size Z = 500, with a signi�cant
improvement with respect to small sizes. The highest average test purity for the WHOI 40 cor-
responds to 0.77 with four overlaps (i.e., four couples of ground truth species overlapping with
the same clusters). The highest average test purity for the WHOI 22 is equal to 0.68 with two
overlaps.

We benchmarked our results using a state-of-the-art unsupervised learning pipeline based on a set
of 131 hand-crafted features and fuzzy k-means. The method was introduced in [214], the same
paper where two of the datasets used in this analysis (i.e., Lensless and WHOI 40) were released.
To our knowledge, a state-of-the-art clustering benchmark was not available for the WHOI 22.
To benchmark our results, we used the approach described in [214] to perform clustering on the
WHOI 22, based on the pipeline described in their paper.
As shown in Table 4.4, our best embedding (feature reshape r2, variational autoencoder with la-
tent space size Z = 500), outperforms the state-of-the-art approach for all the datasets included
in our work. Our results are marginally better in terms of purity for the Lensless dataset. They are
instead signi�cantly better when considering the two more challenging datasets WHOI 40 and
WHOI 22. We obtain not only a higher purity but also a reduction in the number of overlaps. It
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is worth noticing that the purity and number of overlaps standard deviation among the di�erent
experimental runs is low for all the datasets, proving the robustness of the proposed methodology.

Algorithm/Z 10 30 50 100 500

image-AE 0.47± 0.05
(1.4± 0.5)

0.53± 0.03
(1.4± 0.49)

0.56± 0.02
(1.6± 0.49)

0.55± 0.01
(1.8± 0.4)

0.60± 0.01
(1.4± 0.49)

image-VAE 0.53± 0.017
(1.4± 0.5)

0.55± 0.04
(1.6± 0.49)

0.58± 0.01
(2.0± 0.63)

0.59± 0.01
(1.6± 0.48)

0.62± 0.01
(2.0± 0.0)

FEr1-AE 0.38± 0.02
(1.6± 0.5)

0.62± 0.02
(1.2± 0.40)

0.75± 0.04
(0.4± 0.49)

0.84± 0.03
(0.2± 0.4)

0.95± 0.01
(0.0± 0.0)

FEr1-VAE 0.94± 0.01
(0.0± 0.0)

0.97± 0.01
(0.0± 0.0)

0.97± 0.01
(0.0± 0.0)

0.97± 0.01
(0.0± 0.0)

0.97± 0.002
(0.0± 0.0)

FEr2-AE 0.40± 0.05
(1.6± 0.5)

0.70± 0.02
(0.8± 0.4)

0.75± 0.03
(0.4± 0.49)

0.86± 0.05
(0.2± 0.4)

0.97± 0.01
(0.0± 0.0)

FEr2-VAE 0.98± 0.01
(0.0± 0.0)

0.98± 0.03
(0.0± 0.0)

0.98± 0.01
(0.0± 0.0)

0.98± 0.02
(0.0± 0.0)

0.98± 0.02
(0.0± 0.0)

Table 4.1: Clustering purity on Lensless for latent space size Z . The �rst two rows consider the image
as input to the variational autoencoder. The next two consider features with the approximate
homogeneous distribution among channels, width, and height r1 = (30, 32, 32). The last
two rows consider features with a lower number of channels and a corresponding higher width
r2 = (3, 32, 320)

Algorithm/Z 10 30 50 100 500

FEr1-AE 0.25± 0.01
(11.8± 1.16)

0.41± 0.03
(8.0± 1.26)

0.50± 0.02
(6.8± 1.46)

0.59± 0.01
(6.6± 1.01)

0.69± 0.01
(4.8± 0.74)

FEr1-VAE 0.21± 0.01
(13.8± 0.99)

0.22± 0.02
(14.4± 1.62)

0.30± 0.04
(13.2± 1.93)

0.40± 0.08
(10.6± 1.2)

0.67± 0.04
(5.4± 1.35)

FEr2-AE 0.25± 0.01
(13.2± 0.74)

0.42± 0.03
(9.0± 0.63)

0.51± 0.01
(6.2± 0.40)

0.62± 0.01
(5.8± 1.16)

0.72± 0.006
(4.6± 0.80)

FEr2-VAE 0.66± 0.01
(5.8± 0.75)

0.71± 0.02
(5.8± 1.16)

0.73± 0.02
(5.2± 0.98)

0.77± 0.01
(3.8± 1.16)

0.77± 0.01
(4.0± 0.63)

Table 4.2: Clustering purity on WHOI 40 for latent space size Z . In this table, only the two reshapes
r1 = (30, 32, 32) and r2 = (3, 32, 320) are considered.
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Algorithm/Z 10 30 50 100 500

FEr1-AE 0.22± 0.02
(5.0± 1.1)

0.40± 0.02
(2.6± 0.8)

0.48± 0.01
(2.4± 0.48)

0.55± 0.01
(1.0± 0.0)

0.65± 0.02
(1.4± 0.49)

FEr1-VAE 0.22± 0.02
(7.6± 1.2)

0.30± 0.01
(5.8± 1.93)

0.33± 0.07
(5.8± 1.32)

0.44± 0.07
(3.8± 1.72)

0.68± 0.01
(2.0± 0.4)

FEr2-AE 0.24± 0.02
(4.2± 1.16)

0.38± 0.01
(3.6± 0.49)

0.51± 0.02
(2.2± 0.74)

0.60± 0.02
(1.6± 0.49)

0.66± 0.01
(1.2± 0.4)

FEr2-VAE 0.63± 0.004
(2.0± 0.63)

0.66± 0.01
(1.6± 0.49)

0.68± 0.005
(1.6± 0.49)

0.68± 0.006
(1.4± 0.5)

0.68± 0.01
(1.8± 0.4)

Table 4.3: Clustering purity on WHOI 22 for latent space sizeZ . In this table only the two reshapes r1 =
(30, 32, 32) and r2 = (3, 32, 320) are considered.

Algorithm/Dataset Lensless WHOI 40 WHOI 22
Pipeline from [214] 0.93 (0) [214] 0.71 (5) [214] 0.56 (3)
Ours 0.98 (0) 0.77 (4) 0.68 (2)

Table 4.4: Purity comparison between our best average results and the available state-of-the-art.

Finally, we benchmarked the proposed approach and the quality of our lower dimensional em-
beddings, with respect to supervised algorithms. To this end, we considered two di�erent clas-
si�ers i.e., a Fully Connected neural network (FC) and ridge regression, training on top of our
best embedding for all three datasets. We performed �ve di�erent experiments, comparing the
resulting best test classi�cation accuracy against available state-of-the-art supervised approaches,
based on di�erent types of classi�ers. For the WHOI 22, we compared our results with the ones
reported in [321] and [269], where a set of hand-crafted features, appositely designed and selected
for plankton images is engineered, and fed to an SVM classi�er. For the WHOI 40 dataset and
the Lensless dataset, we compared our results with the ones reported in [214], where a set of 131
hand-crafted features is extracted and fed to a two layers neural network (for Lensless) and a Ran-
dom Forest (RF) classi�er (for WHOI-40).
As we can observe in Table 4.5, a ridge regression classi�er on top of our best embedding out-
performs the state-of-the-art supervised classi�cation results, for all the three datasets included in
our analysis (1.000 versus 0.980, 0.957 versus 0.790 and 0.883 versus 0.880, for the Lensless, the
WHOI 40 and the WHOI 22, respectively).
These results proved that our embedding provides a better representation of the input data com-
pared to hand-crafted features, speci�cally designed for plankton cells.
For completeness, in Table 4.6, we indicated the total time required to execute our pipeline for
the best model.
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Algorithm/Dataset Lensless WHOI 40 WHOI 22
Our embedding + FC 1.000 0.948 0.868
Our embedding + ridge 1.000 0.957 0.883
Features from [214] + FC 0.980[214] — —
Features from [214] + RF — 0.790[214] —
Features from [321] + SVM — — 0.880[321]
Features from [269] + SVM — — 0.880[269]

Table 4.5: Supervised learning benchmarks. The state-of-the-art results are directly taken from the original
publications.

Lensless WHOI 40 WHOI 22
(238.56± 2.00) s (195.75± 1.04) s (194.93± 2.51) s

Table 4.6: Time requested for the execution of our pipeline (best model).

4.5 Discussion

In this thesis, we introduced an e�cient unsupervised learning pipeline for the characterization
of plankton images. Input images are pre-processed and fed to a neural network (DenseNet201
in our experiments) pre-trained on ImageNet, without �ne-tuning. The resulting set of features
are used as inputs to train an encoder-decoder neural network (an autoencoder or a variational au-
toencoder) and the resulting latent space representations of the inputs are used as a lower dimen-
sional set of embedded features, that are then passed to a clustering algorithm (a fuzzy k-means in
our experiments).
We exploited three datasets extracted from two di�erent acquisition systems and posing di�erent
challenges. The Lensless dataset, with a coarse granularity but is characterized by low-resolution
and noisy images; the WHOI 40, is less coarse with respect to the Lensless and with a relatively
higher number of classes (40) and the WHOI 22, with �ne-grained features. We showed that a
variational autoencoder with latent space size Z = 500 and pre-trained input features, reshaped
as (channels, height, width) = (3, 32, 320), generally gives the best results in terms of purity and
overlaps number, for all the datasets included in our work. We further showed that our approach
outperforms state-of-the-art unsupervised learning approaches [214] where hand-crafted features
are engineered and used for clustering.
We further proved the quality of the embedded features produced by our pipeline using a super-
vised classi�cation framework (in terms of test accuracy). Precisely, we showed that our embed-
ding features coupled to a ridge regression classi�er outperform state-of-the-art classi�ers where
hand-crafted features are used as input for SVM [269, 321], fully connected neural networks and
random forests [214].
The variational autoencoder architecture considered for the tests of the proposed pipeline is shal-
low, and the ImageNet pre-trained DenseNet201 is only used for feature extraction. Hence, the
pipeline can be run on embedded devices (e.g., a Rasperry-Pi), allowing for in situ recognition,
which may be fundamental for plankton population studies.
It is worth underlining that our pipeline is general with respect to the source of input data. A com-
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plete analysis of the performances of another kind of data is out of the scope of this thesis, however,
the proposed pipeline can be potentially extended to other domains. A signi�cant advantage of
our approach is indeed represented by the usage of pre-trained features and an encoder-decoder
network to obtain a quality embedding for plankton data.
Di�erently from the hand-crafted features exploited in the works we used as benchmarks, these
features do not require any engineering nor tuning at any step to adapt to a speci�c dataset. For
instance, the computation of shape-descriptors is instead a multi step-process, starting with a seg-
mentation algorithm (as done in [214, 269]) to identify the plankton cell. The segmentation can be
performed using image processing tools or deep learning. The quality of the features is then highly
dependent on the quality of the segmentation, which requires tuning according to speci�c prop-
erties of the dataset (e.g., acquisition system, brightness, noise). Avoiding this step, our pipeline
represents an e�cient approach with a signi�cant advantage in terms of time and resources.
Finally, as a further development, the implementation of an end-to-end solution would be crucial
for easy deployment in real-life scenarios. Additionally, it would be interesting and useful to test
the approach for anomaly detection. These aspects are currently under study.
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5 Datasets Similarity

In the previous chapters, we have seen the outstanding deep learning performances in the com-
puter vision �eld where they became a de facto standard. Nevertheless, despite this great success, it
is still troublesome to compare di�erent computer vision problems or determine whether a prob-
lem is harder than another.
Another challenge is related to the number of di�erent tasks we can have in computer vision. In-
deed, we can have a plethora of di�erent tasks including classi�cation, identi�cation, detection,
recognition, estimation of pose, egomotion or optical �ow.
To de�ne more speci�c boundaries, we decided to focus on image classi�cation and even in this
context is arduous to compare di�erent classi�cation tasks. This complexity can be appreciated
by trying to answer to the following question: given two image datasets how can we measure how
similar they are? A related question to this is: can we compute a distance measure between the
two datasets?
Intuitively, it is easy to understand that a dogs image dataset is going to be very di�erent from a
dataset about planes. It is more di�cult to quantify this di�erence and build a relation between
more than two datasets. Indeed it is troublesome to understand whether a new dataset about
�owers is going to be closer to the dogs or the planes one. This situation is shown in Figure 5.1.
A good starting point could be about what "similar" means with the available tools we have.
Clearly, computing a similarity measures between image datasets requires to choose a represen-
tation of the data we want to compare. Di�erent choices can be made and we will see that In the
very �rst steps of our algorithms, we commonly used convolutional neural networks as explained
in section 2.5. Another common tool used in the image analysis �eld is the transformer, as shown
in section 2.6. In this sense, the output coming from such models is usually related to common
shapes and patterns detected in the images. We are going to see that the features, extracted in such
a way are the starting point to further analysis and similarity measures computations.
To partly address these challenges we propose two methodologies base on two di�erent approaches.
The �rst one is going to exploit histograms to represent the datasets features distributions and
compute distance between them. The second one is going to rely on an approximation of gaus-
sian kernel, named Random Fourier Features, to compute similarity between data points.
This chapter is organized as follows: in section 5.2 we introduce a set of theoretical concepts about
distances. In section 5.3 presents an account of the relevant background while section 5.4 reports
details on our methodology. Additionally, we provide the hyperparameters setup and furnish in-
formation about the datasets utilized in the experiments. In section 5.5, we present the �ndings
of our empirical investigation. Finally, section 5.6 is left to concluding remarks.
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Figure 5.1: Three samples from di�erent datasets. Intuitively it is easy to understand that they are all dif-
ferent one from another. More di�cult is to quantify such discrepancy.

5.1 Motivations

The issue of computing dataset distance involves two distinct topics. First, from a theoretical
point of view, it can be interesting to quantify similarity in a principled way. Being able to describe
di�erent kinds of problems can be compelling and give us a formalization about how they relate
one to another. The second important aspect has a more applied �avour and is about transferabil-
ity processes. Indeed, the questions that we are posing can be relevant both for transfer learning
and meta-learning processes, with an impact on the e�ciency. For instance, in transfer learning,
the aim is to reduce the number of resources used when we are moving to a new context. As we
have seen before, one of the common requirements of such models is the availability of a huge
amount of data. In some contexts, this could be an easy problem to solve. For some well-known
scenarios, it is possible to recover online good datasets, both general-purpose and domain-speci�c.
We have also seen in chapter 3 that a model pre-trained on a good general-purpose dataset such
as ImageNet or ImageNet21k can provide valuable results even in more speci�c contexts. At the
same time in chapter 3 we have also seen that these general-purpose datasets provide poor per-
formances when �ne-tuned to some precise contexts. For instance when the ratio between the
number of samples and the number of classes is low and the inter-class variability is low. This
happened with datasets like Stanford Cars and Fine-Grained Visual Categorization Aircraft. The
similarity between di�erent classes is high enough to make them hard to be separated. This un-
pleasant scenario could happen again. In particular, some settings like the medical and biological
ones tend to deal with datasets with few samples. In such a context, it could be good to have a
good pre-trained model on a similar dataset and not on a general-purpose one. In this sense, by
providing a good distance metric between datasets it could be possible to perform a better transfer
procedure. Indeed, across similar datasets, it should be easier to transfer knowledge. The intuition
behind this is that "transfer" usually means changing the parameters of the model to �t the new
one. In a situation where the new setting is more similar to the previous one, this could mean
faster �ne-tuning as the new weights of the model should be more similar to the old ones. For
these reasons, it could be seen as a natural way to perform a transfer operation. Moreover, by
de�ning such a metric we could estimate how tough a transfer process could be.
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5.2 Background

In this section, we are going to provide a description of datasets and their links to probability
distributions. The purpose of this section is to provide the theoretical framework that we will
mostly rely on in this chapter.

Datasets: a bag of datasets is a collection of T , typically labelled, datasets, de�ned as:

St = (xt,i, yt,i)
nt
i=1 t = 1, . . . , T. (5.1)

where nt is the cardinality of each dataset. The inputs xti belongs to some input spaceXt = Rdt ,
where dt is the input dimension. The labels yti belong to some subset of Yt ⊂ [1, . . . , C] among
a total of C possible labels. Speci�cally, we have in mind image datasets, where dt could be the
number of pixels, and the labels identify a class of objects.

Taking a di�erent perspective on our data we can see each dataset as an identical and indepen-
dent set of samples from a probability distributionPt onXt×Yt. Note that, each dataset de�nes
an empirical distribution:

P̂t =
1

nt

nt∑
i=1

δ(xt,i,yt,i) (5.2)

where δ(xt,i,yt,i) is a Dirac delta function centered in (xt,i, yt,i). In order to study such distri-
butions, we assume representations are available to embed the inputs in a common space Z . It
is worth noticing that this is not true in general. Di�erent datasets can be represented by diverse
features with a speci�c size. In the case of images, for instance, we can have a di�erent number
of pixels. Despite this, some techniques are available to force such input to a space with the same
dimensionality. More in general, a sequence of transformations can be applied to our data, both
for preprocessing (e.g. resize, cropping) and feature extraction. As we have seen in chapter 3, a
common technique consists in resizing all images to the same size and using a convolutional neu-
ral network to obtain more informative features. Whatever the pipeline, we are going to use Φ to
express the mapping operation from the original dataset to the common spaceZ:

Φt : Xt → Z. (5.3)

Here Z = Rp is the feature space where all inputs are embedded. Note that each map Φt

de�nes a probability distribution onZ , via

Qt(A) = Pt(Φ
−1
t (A)), (5.4)

forA ⊂ F measurable. In other words, each Φt de�nes a random variable with lawQt.
As we were mentioning before, in our image example each map Φt arises from a resizing step

for each image followed by the application of a common pre-trained deep networks, used as a
feedforward feature extractor.
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Points distance : in the next pages we are going to discuss the notion of distance between
datasets. It is convenient to start by recalling here the de�nition of distance between two points.
Usually, the concept of distance is associated with a metric space, which is a set equipped with the
notion of distance between its elements, usually called points. In this sense a distance metric is a
function d : (·, ·)→ R satisfying the following properties:

1. Identity: the distance between a point a and itself is zero

d(a, a) = 0 (5.5)

2. Positivity: the distance between two distinct points a and b is always positive

d(a, b) > 0 (5.6)

3. Symmetry: the distance between two points a and b is always the same as the distance be-
tween b and a

d(a, b) = d(b, a) (5.7)

4. Triangle inequality: the distance between two points a and c it is always smaller or equal
with respect to one obtained by operating a "detour" via a point b

d(a, c) ≤ d(a, b) + d(b, c) (5.8)

The de�nition of distance applies to many common metrics. The most famous one is probably
the euclidean distance. Given two points a, b ∈ Rn is de�ned as:

deu(a, b) =

√√√√ n∑
i=1

(ai − bi)2 (5.9)

In general, there are many distance measures between points that we can use. We are going to list
some of them:

- Manhattan distance: is the sum of the absolute di�erences of their Cartesian coordinates.
The most direct path between two points is the shortest one only along one direction

dM1(a, b) = ||a− b||1 =
n∑
i=1

|pi − qi| (5.10)

- Chebyshev distance: the distance between two vectors is the greatest of their di�erences
along any coordinate

dCh(a, b) = max
i

(|ai − bi|) (5.11)

An intuition about Chebyshev distance is that, on a two-dimensional grid, represents a
measure as if the shortest path between two points can take steps in any of the eight grid
directions at equal cost.

96



5.2 Background

Figure 5.2: The mathematical norms set equal to the unit sphere. (Left) Norm-1 corresponds to Manhattan
distance (Center) Norm-2 corresponds to euclidean distance (Right) norm-∞ corresponding
to Chebyshev distance.

- Minkowski distance[192]: this distance can be considered a generalization of the euclidean
distance and the Manhattan distance and is de�ned as

dMink(a, b) = (
n∑
i=1

|ai − bi|p)
1
p (5.12)

We notice that we can also have p ∈]0, 1]. This category of distances is usually indicated
as fractional quasinorm. They are a type of semimetrics because they are not proper norms
violating the triangle inequality[138].

Minkowski distance measure is a generalization of Manhattan, euclidean, and Chebyshev dis-
tance. In this sense, there is a correspondence between the aforementioned distances and some
basic geometrical concepts, at least in the R2 space. For instance, remembering that the sum-
mation is only a �nite approximation of an integral, we can notice that the euclidean distance
corresponds to the mathematical norm-2. In a similar way, Manhattan distance and Chebyshev
distance correspond to the mathematical norm-1 and norm-∞, respectively. Moreover, we can
easily represent such norms by setting them equal to the unit sphere. This is shown in Figure 5.2.

A di�erent similarity measure between points is cosine distance. It is de�ned as the cosine of the
angle between the points viewed as vectors in an inner product space. It is the dot product of the
vectors divided by the product of their lengths

dcos(a, b) =
a · b
||a|| ||b||

= =

n∑
i=1

aibi√√√√ n∑
i=1

a2
i

√√√√ n∑
i=1

b2i

(5.13)

This similarity always belongs to the interval [−1, 1] and solely depends on the angle between the
two vectors. Intuitively, when two vectors are proportional, orthogonal, or opposite the cosine
similarity provides as output 1, 0 or−1, respectively.
In general, it is not easy to determine which distance measure can be more suitable for a speci�c
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task. Certainly, there is not a "best" metric in general but in the deep learning context, we com-
monly have to deal with features belonging to high-dimensional spaces. A work by Domingos[56]
underlines that when working with such spaces our intuitions do not apply to the tri-dimensional
space we usually deal with. For instance, in high dimensions, most of the mass of a multivariate
gaussian is not close to the mean but in an increasingly distant shell around it. This peculiar,
high-dimensional situation can lead to unusual behaviors by pattern algorithms based on prox-
imity like K-Nearest neighbors. It can be meaningful to reason about which metrics can perform
better under such conditions. In a work by Hinnenburg et al[97] and in the aforementioned, by
Domingos[56] it is shown that Minkowski distances withp = [1, 2] can provide a reliable distance
measure for classi�cation algorithms such K-Nearest Neighbors. Another work by Aggarawal et
al[5] showed that in Minkowski distances the higher p, the poorer contrast between closest and
further neighbors. In this sense, metrics such as Manhattan and fractional quasinorms probably
behave better than higher norm metrics like euclidean distance.

Statistical distances : in the previous section we have seen di�erent techniques to com-
pute distances between points in a metric space. Usually, in statistics, we are even more interested
in the distance between di�erent data distributions. This perspective can be especially useful in
estimating similarity measures, as it enables the comparison of di�erent populations and provides
valuable insights into their characteristics. We are going to refer to these distances as statistical
distances.
Given two distributions we could expect that in general, a measure between the two distribu-
tions will respect all the properties shown in Equation 5.5, Equation 5.6, Equation 5.7 and Equa-
tion 5.8. This is not true as usually we deal with di�erent situations where a statistical distance
violates the non-negativity property shown in Equation 5.6. We are going to refer to such statis-
tical distance as pseudometrics. Instead, when the symmetry property in Equation 5.7 is violated
we are dealing with quasimetrics. Another scenario is the one where the triangle inequality in
Equation 5.8 is violated corresponding to the aforementioned scenario of semimetrics. One last
common situation is the one where a statistical distance only satis�es the identity and the non-
negativity property. Such statistical distances are frequent in statistics and we are going to refer to
them as statistical divergences. In general, all distance metrics between probability distributions
are also divergences, but the opposite is not true. A divergence may or may not be a distance
metric.

In general, we can have di�erent ways to categorize statistical distances between distributions.
In the following pages, we are going to consider a partitioning between integral probability metrics
and f-divergences. Given two distributions P and Q de�ned on the same space X and a class of
functionsF , an integral probability metric(IPM) is de�ned as

DIPM (P,Q) = sup
f∈F
| E
x∼P

f(x)− E
x′∼Q

f(x′)| (5.14)

that intuitively is considering the worst case that maximizes the distance by using the function
f ∈ F . The integral probability metrics class includes some popular measures such as maximum
mean discrepancy, Wasserstein distance, and energy distance. We are going to provide more details
about them in the following pages.
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The second class of statistical distance we are going to consider is the f-divergences. Given two
distributions P andQ the f-divergence of P from Q is de�ned as

Df (P,Q) =

∫
Q(x)f

(
P (x)

Q(x)

)
dx (5.15)

Also, the f-divergences class includes a plethora of important statistical distances such as Kullback-
Leibler, Jenson-Shannon, and Pearson χ2. We can start by analyzing the class of integral proba-
bility metrics

• Integral Probability Metrics (IPM):

- Wasserstein distance: introduced by Kantorovich[121] and later reformulated by Vaser-
stein[296], is a distance function between probability distributions on a given metric
space.
In its most general version, the Wasserstein distance cannot be seen as a special case
of integral probability metrics. Indeed, it is de�ned as

We(P,Q) =

(
inf

µ∈L(P,Q)

∫
ρ(x, y)dµ(x, y)

)1/e

(5.16)

where L is the set of all measures on the metric space. However, we saw in Equa-
tion 5.14 that, depending on the class of functionF we select, di�erent distance mea-
sures are provided.
By choosing F = {f : ||f ||L ≤ 1} we obtain the Kantorovich metric. From the
Kantorovich-Rubinstein theorem, we have that the Kantorovich metric is the dual
representation of the Wasserstein distance, de�ned as:

W1(P,Q) = inf
µ∈L(P,Q)

∫
ρ(x, y)dµ(x, y) (5.17)

Intuitively, when each distribution is viewed as a unit amount of earth piled in met-
ric space, Wasserstein distance provides the minimum cost of turning one pile into
the other, corresponding to the amount of earth that needs to be moved, multiplied
by the mean distance between the source and the destination pile. Because of this
analogy, the metric is known in computer science as the earth mover’s distance.

- Maximum Mean discrepancy: formalized by Smola et al.[265] consists in computing
distances between distributions as the distances between mean embeddings of fea-
tures produced via a feature map φ : X → H where H is a reproducing kernel
Hilbert space[9].
The formulation of maximum mean discrepancy is:

MMD(P,Q) = ||EX∼P [φ(x)]− EX′∼Q[φ(X ′)]||H (5.18)

Its relation with the more general de�nition of Integral probability metrics is related
to the family of the functionF we choose to consider. Indeed, by selectingF = {f :
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Distance F
Wasserstein 1 {f : ||f ||L ≤ 1}

MMD {f : ||f ||H ≤ 1}

Table 5.1: Integral probability metrics and their corresponding class of functionsF

||f ||H ≤ 1}we obtain the maximum mean discrepancy formulation.
A simple example can be shown by considering X = H = Rd and φ(x) = x. In
this case:

MMD(P,Q) = ||EX∼P [φ(x)]− EX′∼Q[φ(X ′)]||H =

= ||EX∼P (X)− EX′∼Q[X ′]||Rd =

= ||µP − µQ||Rd
(5.19)

showing that in this simple scenario, the distance between the distribution simply
corresponds to the distance between the mean of the distributions. Clearly, with such
a simple approximation, two distributions having the same mean will result in having
a distance equal to zero, even if they di�er in terms of variance and the subsequent
distribution momentums. A possible alternative consists in applying the kernel trick,
showing that kernels such as the gaussian one, provide a maximum mean discrepancy
equal to zero if and only if the two distributions P andQ are identical.

We can report in Table 5.1 a brief recap about the IPM we analyzed and their corresponding
family of the functionF de�ning them as in Equation 5.14.

• F-Divergences:

- Bhattacharyya distance: it is not a metric, even if it is generally referred to as a "dis-
tance". It is instead a semimetric, since it does not obey the triangle inequality. This
distance is strictly related to the Bhattacharyya coe�cient, measuring the overlap be-
tween two distributions in the same space. It is de�ned as

DBhat(P,Q) = −ln(BC(P,Q)) (5.20)

whereBC(P,Q) is the Bhattacharyya coe�cient de�ned as

BC(P,Q) =

∫
x∈X

√
P (x)Q(x)dx (5.21)

Intuitively when the two distributions coincide the distance between them is zero.
Indeed we have that

BC(P,Q) =

∫
x∈X

√
P (x)P (x)dx =

∫
x∈X

√
P (x)2dx =

∫
x∈X

P (x)dx = 1
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resulting in DBhat(P, P ) = 0. Instead, when the two distributions do not overlap
inX we have that

BC(P,Q) =

∫
x∈X

√
P (x)Q(x)dx = 0

resulting inDBhat(P,Q) = +∞.
It is easy to see that Bhattacharyya distance is an f-divergence measure where the f

function involved is f
(
P (x)

Q(x)

)
=

√
P (x)

Q(x)
as

DBhat(P,Q) = −ln
(∫

x∈X

√
P (x)Q(x)dx

)
= −ln

(∫
x∈X

Q(x)

√
P (x)Q(x)

Q(x)
dx

)
=

= −ln

(∫
x∈X

Q(x)

√
P (x)

Q(x)
dx

)
= −ln

(∫
x∈X

Q(x)f

(
P (x)

Q(x)

))
= −ln(DF (P,Q))

- Hellinger distance: de�ned in terms of the Hellinger integral, introduced by Hellinger[93].
It is a proper statistical distance measure, respecting the aforementioned four prop-
erties. It is de�ned as

DH(P,Q)2 =
1

2

∫
x∈X

(√
P (x)−

√
Q(x)

)2
(5.22)

From the Cauchy-Schwarz inequality, we can derive that 0 < DH(P,Q) < 1.
Moreover, it is easy to see that Hellinger distance is an f-divergence measure where

the f function involved is f
(
P (x)

Q(x)

)
=

(√
P (x)

Q(x)
− 1

)2

as

DH(P,Q)2 =
1

2

∫
x∈X

(√
P (x)−

√
Q(x)

)2
=

=
1

2

∫
x∈X

(
P (x) +Q(x)− 2

√
P (x)Q(x)

)
=

=
1

2

∫
x∈X

Q(x)

(
P (x)

Q(x)
+ 1− 2

√
P (x)

Q(x)

)
=

1

2

∫
x∈X

Q(x)

(√
P (x)

Q(x)
− 1

)2

=

=
1

2
DF (P,Q)

Moreover, in its discrete formulation, it is easy to see that the Hellinger distance is
strongly tied to the Bhattacharyya coe�cient, as:

DH(P,Q)2 = 1−BC(P,Q) (5.23)

To prove it we can notice that:
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DH(P,Q) =
1√
2

√∑n
i

(√
pi −

√
qi
)2

By elevating to the square both sides and by remembering that for a general discrete

distributionD it holds that
n∑
i=1

di = 1:

DH(P,Q)2 =
1

2

n∑
i

(
√
pi −

√
qi)

2 =
1

2

n∑
i

(pi + qi − 2
√
piqi) =

=
1

2

n∑
i=1

pi +
1

2

n∑
i=1

qi −
n∑
i=1

√
piqi = 1−

n∑
i=1

√
piqi = 1−BC(P,Q)

- Kullback–Leibler divergence: introduced by Kullback and Leibler[145] is a statistical
divergence measure. Indeed it does not satisfy the triangle inequality nor the symme-
try property. It is de�ned as

DKL(P ||Q) =

∫
P (x) log

(
P (x)

Q(x)

)
dx (5.24)

It is easy to show, via Gibbs inequality, thatDKL(P ||Q) = 0⇔ P = Q.
It can also be shown thatDKL(P ||Q) ≥ 0
It is also easy to show that Kullbach-Leibler divergence is an f-divergence measure

where the f function involved is f
(
P (x)

Q(x)

)
=
P (x)

Q(x)
log

(
P (x)

Q(x)

)
as

DKL(P ||Q) =

∫
x∈X

P (x) log

(
P (x)

Q(x)

)
=

∫
x∈X

Q(x)
P (x)

Q(x)
log

(
P (x)

Q(x)

)
=

= DF (P,Q)

The Kullbach-Leibler divergence also has some interesting properties. The quantity
DKL(P ||Q) is convex in the pair of probability measures P,Q, i.e. by having two
pairs of probability distributions (P1, Q1), (P2, Q2) and λ ∈ [0, 1], then:
DKL(λP1+(1−λ)P2||λQ1+(1−λ)Q2) ≤ λDKL(P1||Q1)+(1−λ)DKL(P2||Q2)
Moreover, the divergence measure is additive for independent distributions, i.e. given
two pairs of independent distributionsP1, P2, Q1, Q2 such that: P (x, y) = P1(x)P2(y)
andQ(x, y) = Q1(x)Q2(y) then:
DKL(P ||Q) = DKL(P1||Q1) +DKL(P2||Q2)

So far we have been thinking ofDKL as a way to compute the distance between two
distinct distributions. A slightly di�erent point of view consists in trying to replace
a function we have with an estimate of it. The idea is to replace the original function
with another one that is as most as similar as possible to the original one but sim-
pler. A new function can be proposed and then we can compute the distance from
the original one by using theDKL. We can even extend this reasoning by proposing a
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parametric function, replacing the original, and minimizing theDKL over its param-
eters. In this sense, there is a strong tie between this approach and neural networks.
Indeed, such models are function approximators that, minimizing a good objective
function, can com learn a wide range of complex functions. We have just seen that we
can use and minimize the DKL to obtain a good estimate of the original function.
This is exactly what is done when using Variational Autoencoders, which learn to
map an input (e.g. an image) into a gaussian distribution in a latent space and com-
pute exactly theDKL between such gaussian and the standard gaussian:
DKL(N (µ, σ)||N (0, I))
In the Variational Autoencoder context, the intuition is to use the DKL value as a
regularization term in the objective function model.

- Jensen–Shannon divergence: introduced by Jensen and Shannon[165] it is based on
the Kullbach-Leibler divergence, being a symmetrized and smoothed version of it.
Therefore it is a proper statistical distance de�ned as

DJS(P ||Q) =
1

2
DKL

(
P ||P +Q

2

)
+

1

2
DKL

(
Q||P +Q

2

)
(5.25)

the Jensen–Shannon divergence is everywhere de�ned and bounded and it is equal
to zero only when P andQ coincides. It is possible to show that Jensen–Shannon is
an f-divergence measure where the f function involved is

f

(
P (x)

Q(x)

)
=

1

2

(
P (x)

Q(x)
log

(
2P (x)

P (x) +Q(x)

)
+ log

(
2Q(x)

P (x) +Q(x)

))
as

DJS(P,Q) =
1

2
DKL

(
P ||P +Q

2

)
+

1

2
DKL

(
Q||P +Q

2

)
=

=
1

2

∫
P (x)log

(
2P (x)

P (x) +Q(x)

)
dx+

1

2

∫
Q(x)log

(
2Q(x)

P (x) +Q(x)

)
dx =

=
1

2

∫
P (x)log

(
2P

P (x) +Q(x)

)
+Q(x)log

(
2Q(x)

P (x) +Q(x)

)
dx =

=

∫
Q(x)

1

2

(
P (x)

Q(x)
log

(
2P (x)

P (x) +Q(x)

)
+ log

(
2Q(x)

P (x) +Q(x)

))
dx =

= DF (P,Q)

– Pearson’s χ-square divergence: derived directly as an interpretation of the Pearson’s
statistical χ2 test that was introduced by Pearson [219] it is de�ned as

Dχ(P,Q) =

∫
(P (x)−Q(x))2

Q(x)
dx (5.26)

the interpretation given by Pearson is related to statistical tests. Indeed the χ2 test
can be used to perform three di�erent types of comparison. One is a goodness of
�t to establish whether an observed frequency distribution di�ers from a theoretical
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Distance/Divergence f(t)

Bhattacharyya distance
√
t

Hellinger distance (
√
t− 1)2

Kullbach-Leibler divergence t log(t)

Jensen-Shannon divergence
1

2

(
t

2t

t+ 1
+ log

2

t+ 1

)
Pearson’s χ-square divergence (t− 1)2

Table 5.2: f-divergences and their corresponding f(t), with t =
(

P (x)
Q(x)

)

distribution. Another one is the independence test to assess whether observations
consisting of measures on two variables, expressed in a contingency table, are inde-
pendent of each other. Pearson’sχ-square quantity de�ned above can be also used as
a divergence measure, similar to other divergences we have seen previously. It is also
easy to see that is an f-divergence measure where the f function involved is

f

(
P (x)

Q(x)

)
=

(
P (x)

Q(x)
− 1

)2

as

Dχ(P,Q) =

∫
(P (x)−Q(x))2

Q(x)
dx =

∫
Q(x)

(P (x)−Q(x))2

Q(x)2
dx =

=

∫
Q(x)

P (x)2 +Q(x)2 − 2P (x)Q(x)

Q(x)2
dx =

∫
Q(x)

(
P (x)2

Q(x)2
+ 1− 2

P (x)

Q(x)

)
dx =

=

∫
Q(x)

(
P (x)

Q(x)
− 1

)2

dx = DF (P,Q)

We can report in Table 5.2 a brief recap about the f-divergences we analyzed and their cor-

responding f
(
P (x)

Q(x)

)
as de�ned in Equation 5.15

We also have statistical distances that do not belong to the above de�nitions for some rea-
son or that belong to both of them. The last scenario is the one of total variation. The
total variation distance is based on the concept of total variation introduced by Jordan[32].
Its peculiarity can be described both by the de�nitions of integral probability metrics and
f-divergences. It is a proper statistical distance measure, satisfying the four properties in-
cluded in the de�nition of statistical distance. It is de�ned as

DTV = max
A⊂X

|P (A)−Q(A)| (5.27)

representing the largest possible di�erence that two probability distributions can assign
to the same event. We can also provide an alternative formulation for the total variation
distance:
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DTV =
1

2

∑
x∈X
|P (x)−Q(x)| (5.28)

We are not going to prove that the two formulations are equivalent but at least we can show
that there exists a set A such that these two formulations are equivalent. We can consider
the �rst formulation together with a set A = {x ∈ X : P (x) ≥ Q(x)}. Then, by the
de�nition of probability mass and by remembering that P (x)−Q(x) ≥ 0 when x ∈ A

P (A)−Q(A) =
∑
x∈A

p(x)− q(x)⇔

⇔ |P (A)−Q(A)| =
∑
x∈A
|p(x)− q(x)|

Now we can consider the complement set Ac, and by remembering that P (Ac) = 1 −
P (A) and again by the de�nition of probability mass

P (Ac)−Q(Ac) = 1− P (A)− (1−Q(A)) = Q(A)− P (A) =
∑
x∈Ac

p(x)− q(x)

Now, by considering that P (x)−Q(x) < 0 when x ∈ Ac

Q(A)− P (A) =
∑
x∈Ac

p(x)− q(x)⇔

⇔ −|P (A)−Q(A)| = −
∑
x∈A
|p(x)− q(x)| ⇔

⇔ |P (A)−Q(A)| =
∑
x∈A
|p(x)− q(x)|

Now, to cover the whole spaceX it is su�cient to sum up the two equations we got from
the setsA andAc showing that

2|P (A)−Q(A)| =
∑
x∈X
|P (x)−Q(X)| ⇔

⇔ |P (A)−Q(A)| = 1

2

∑
x∈X
|P (x)−Q(X)|

The total variation distance can be related to Kullback-Leibler divergence by Pinsker’s in-
equality:

DTV (P,Q) ≤
√

1

2
DKL(P ||Q) (5.29)

This inequality has been proved in di�erent manners[71, 172, 289] showing an explicit tie
between these two statistical measures. Total variation distance and Kullbach-Leibler di-
vergence are also tied together by an inequality proposed by Bretagnolle and Huber[29]
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DTV (P,Q) ≤
√

1− e−DKL(P ||Q) (5.30)

Moreover, total variation is tied to Hellinger distance by the following inequality[139]:

DH(P,Q)2 ≤ DTV (P,Q) ≤
√

2DH(P,Q) (5.31)

RandomFourier Features: in the previous section we have seen a di�erent kind of distance
measure between distributions and the main di�erences between two important measure families:
Integral Probability Metrics and F-Divergences. In this section we are going to consider one of the
distances analyzed before, the Maximum Mean Discrepancy, and how it is related to the Random
Fourier Features, used to approximate the inner product of the kernel matrix as de�ned in Equa-
tion 2.29. Previous works showed that it is possible to speed up the training of kernel machines by
�rst mapping the input data to a low-dimensional feature space using randomization, and then
utilizing pre-existing rapid linear methods.
If we consider a learning problem with a dataset such as the one we introduced at the very begin-
ning of ?? we usually want to �nd a hyperplane, separating the data into some categories according
to a certain performance measure such as a loss function.
Such a simple approach usually does not work with complicated data as, usually, they are not lin-
early separable. When we deal with kernel methods we want to map our inputs to a new space V .
The dimension of V is usually high, and kernel methods do not operate explicitly in this space.
Indeed, they use the kernel trick. If we de�ne a positive de�nite kernel k : X × X 7→ R, by
Mercer’s theorem[189] there exists a feature map φ : X 7→ V such that

k(x, y) = 〈φ(x), φ(y)〉V (5.32)

By using the kernel trick and the representer theorem[132] we can set up non-linear models of
our data that are linear in k(·, ·), as

m(x) =
N∑
n=1

αnk(x, xn) = 〈w, φ(x)〉V (5.33)

Even if the kernel trick allows us to treat non-linear data with linear models in high dimension,
the main problem with this family of methods is in their computational costs as they need to com-
pute and invert a Gram matrix, resulting in a cubic cost.
In 2007 Rahimi and Recht [233] proposed a methodology to approximate the inner product in
Equation 5.32. This way we have thatm(x) =

∑N
n=1 αnk(x, xn) =

∑N
n=1 αn〈φ(xn), φ(x)〉V ≈∑N

n=1 αnz(xn)T z(x) = βT z(x)

resulting in:

m(x) = βT z(x) (5.34)

meaning that if we have a good approximation z of the feature map φ then we can project our
data using directly z.
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Remembering that the Gram matrix at location (i, j) contains the product between the i-th and
j-th vectors, i.e. a similarity measure between such vectors, this procedure can be useful if we want
to compute an approximate version of such similarity.
Consider a matrix Ω

Ω =

Ω00 · · · Ω0m
... ωi

...
Ωf0 · · · Ωfm


where every rowωi ∼ N (0, 1

σ2 I). If we consider the set of featuresF extracted via a features map
Φ such as a pre-trained convolutional neural network, and computeX = [cos(FΩ), sin(FΩ)],
it is possible to show that 〈X,X ′〉 corresponds to an approximation of the gaussian kernel. In-
deed, by Euler formula:

X = [cos(FΩ), sin(FΩ)] = eiω
TX

If we compute the inner product between two set of points:

〈X,X ′〉 = 1
N

∑
eiω

TX ¯eiωTX′ = 1
N

∑
eiω

T (X−X′)

By increasing the size M of the original Ω matrix we can obtain a better approximation of the
original gaussian kernel as:

1

N

∑
eiω

T (X−X′) ≈
∫
RD

eiω
T (X−X′)dω = e−

||X−X′||2
2

that is the value computed by a gaussian kernel.

5.3 Relatedworks

In the previous section, we considered di�erent methodologies to compute the distance between
distributions. We have seen that two main families exist, Integral Probability Metrics and F-
Divergences. The research �eld of computing distances between datasets has been explored to
some extent in an unstructured way by a number of studies, focusing on di�erent but related
concepts. Indeed, some works concentrate on computing a distance/divergence measure[3, 10]
between datasets. Others focus on computing a transferability measure [74, 202]. In this sec-
tion, we will discuss in particular two instances of previous works that attempted to compute this
quantity. Aside from their good formalization we focus on such works because the apply to of
the distributions metric we introduced in the previous section. The �rst work will focus on a set
of techniques, named optimal transport techniques, based on an extension of Integral Probabil-
ity Metrics, the Wasserstein distance. The second will focus instead on computing a divergence
between distributions via the Kullbach-Leibler F-Divergence. We are going to show that the the-
oretical concept of distance between datasets can be studied from di�erent perspectives and it can
be tied to the concept of transferability or to the meta-learning context.
In a work proposed by Alvarez-Melis and Fusi[10] the similarity notion is presented as central in
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di�erent domains like meta-learning and domain adaptation. They also point out some potential
issues about recent methodologies as being often heuristic, making strong assumptions on the
labels set across datasets, and being also architecture dependent. In their work, an algorithm is
proposed to compute datasets distance quantity. Such methodology is model agnostic, does not
involve training, and works on datasets with completely disjointed labels. The central element of
this research is optimal transport[221, 298]. In this context, given a complete and separable metric
spaceX and two probability distributionsα ∈ P(X ) and β ∈ P(X ) the Kantorovich formula-
tion[122] is produced as:

OT (α, β)
def
= min

π∈Π(α,β)

∫
X×X

c(x, z)dπ(x, z) (5.35)

where c(·, ·) : X ×X → R+ is the ground cost that can coincide with the metric dX belong-
ing to the space X . Instead, Π(α, β) is the set of coupling that consists of the joint probability
distributions over the product spaceX × X with marginals α and β. In such a situation we can
de�ne the p-Wasserstein distance as:

Wp(α, β)
def
= OT (α, β)1/p (5.36)

Usually the exact distributions α and β are not known in practice so the �nite approximations
α̂ = 1

n

∑n
i=1 δxi and β̂ = 1

m

∑m
i=1 δzi are computed.

In section 5.2 we considered the dataset as sets of features X and labels Y . In this context the
distance between two datasets z, z′ can be de�ned as:

dZ(z, z′) = (dX (x, x′) + dY(y, y′))1/p (5.37)

Even if it is not an easy task, theoretically the distance term about the features dX (x, x′) can be
computed in di�erent ways, e.g. euclidean distance in features space. Even from a theoretical
point of view, it is not clear how to compute distances between labels, in particular when they
are coming from unrelated datasets. When some prior knowledge of the label space is available,
e.g. when working with hierarchical datasets, this information can be exploited to de�ne a notion
of distance. However, the most common scenario is one where such knowledge is missing. In
this scenario, we only have some information about label occurrences in relation to their features.
Therefore we can map our labels as:

y 7→ αy(X) = P (X|Y = y) (5.38)

With such representation, computing a distance means choosing a statistical divergence between
probability distribution. Optimal transport via Wasserstein distance is a good choice as provides
a valid metric, is computable from a �nite number of samples, and supports sparse distributions.
With this idea in mind, we can rede�ne the distance between two datasets as

dZ((x, y), (x′, y′))
def
= (dX (x, x′)p +W p

p (αy), αy′)
1/p (5.39)
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This approach is eventually tested in three di�erent scenarios. The �rst one is dataset selection for
transfer learning. The authors show that on some simple datasets like MNIST[155], FASHION-
MNIST[307], KMNIST[45], USPS[112] and the letters split of EMNIST[47] it is possible to
compute a distance metric. The results are used to derive a transferability measureT within source
and target datasets. This work shows a correlation between such transferability measures and the
obtained results on the target datasets.

A second interesting work is the on presented by Achille et al.[3]. In their work, the aim is to
provide a vectorial representation of image classi�cation datasets. The key idea is the following:
given a dataset with ground-truth labels such images are processed through a small network called
probe network. Then the network’s parameters are considered and an embedding based on the
Fisher information matrix[67] is produced.
In section 5.2 we considered the dataset as a set of inputs X and labels Y . If we consider an im-
age x as input and its corresponding label y we can see a deep network as a family of functions
pw(y|x) trained to approximate the posterior p(y|x) by minimizing a cross-entropy loss. The
weights included in the net can be more or less "important" according to the in�uence they have
on determining the networks’ outputs. Such importance can be quanti�ed by considering a slight
perturbation of the weights

w′ = w + εw (5.40)

and by measuring the Kullback-Leibler divergence, as shown in section 5.2, between the original
distribution pw(y|x) and the new one pw′(y|x) given by the perturbation in Equation 5.40. The
second-order approximation of such divergence is:

E[KL(pw′(y|x)||pw(y|x))] = εw · Fεw + o(εw2) (5.41)

whereKL is the Kullback-Leibler divergence and F is the Fisher information matrix:

F = E[∇wlog(pw(y|x))∇wlog(pw(y|x))T ] (5.42)

showing the covariance of the log-likelihood with respect to the model parameters. The Fisher
information matrix contains information about a particular parameter involved in the training
process. Intuitively, when a parameter is not important in determining the outcome, the corre-
sponding entry in the matrix will be small. One possible problem with this approach is the low
stability related to the highly irregular and noisy loss landscape inherent in many deep learning
architectures. To avoid such situations a more robust estimator that leverages connections to vari-
ational inference is computed.
The main advantages of this embedding are related to the good properties the Fisher information
matrix is bringing: the task embedding does not depend on the label but only on the distribution
predicted by the model. Moreover, it has some correlation with the task di�culty and, when a
hierarchical dataset is provided, it correlates with the taxonomical distance on the dataset.
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5.4 Methodology

In the previous sections we have seen that di�erent metrics can be computed to estimate the dis-
tance between distributions. Given the above discussion, we �rst describe the two approaches we
considered to compute datasets’ distance. We will see that the overall procedure involves three
subsequent steps:

• Representing the input images via resize and features extraction, xt,i, 7→ zt,i

• Apply one between the two speci�c approaches, i.e. histograms or Random Fourier Fea-
tures to represent each dataset

• Compute a distance measure between every dataset

Then, we present technical details about the conducted experiments. We consider the hyper-
parameters tuning.

Pipelines : in our work we considered two di�erent methodologies to compute dataset dis-
tance between di�erent image datasets:

1. Histograms: after preprocessing an image dataset and map our input images to the same fea-
tures subspacez via a pre-trained convolutional neural network. This way, a one-dimensional
histogram can be computed for each of the T embedded datasets and for each coordinate
s:

zst,1, . . . , z
s
t,n 7→ Ĥs

t ∈ Rb (5.43)

where b is the �xed number of bins. Once a histogram is produced for every feature column
s, we can compare such histograms to the ones of another dataset, by computing a distance
measure between every histogram couple.

2. Random Fourier Features: in the second set of experiments, we �rst perform the same steps
of the histogram analysis by preprocessing the images. Then we consider a pre-trained
transformer, to map our input images to the same features subspace z. Lastly, remem-
bering that each kernel matrix location represents a similarity measure between the two
corresponding entries of the matrix, we can approximate the inner product of such matrix
via the procedure explained in section 5.2

Experiments details: we have seen in the previous section that di�erent approaches can be
adopted to compute distance measures between distributions. Each procedure can include a set
of hyper-parameters that must be set a priori. Our analysis does not prioritize exhaustive explo-
ration of hyper-parameters. Rather, we examine a selection of feasible con�gurations. A common
hyperparameter to both pipelines is the image size. In order to represent all the inputs in the same
way, i.e. to have the same dimensionality, we need to resize our images. Such a procedure, which
is simple by itself, is indeed an important step as we have to set a �xed size. To perform the dis-
tance computation in a reasonable time, we decided to resize all the images to 128 × 128 pixels.
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Some datasets have a dimension that is already comparable to the size we choose. However, some
datasets like CIFAR10/100 are way smaller (32 × 32) while other datasets such as DTD have
bigger images on average(453 × 500). The aforementioned operation can be performed also via
cropping. The downside of this technique is the wasted image information given by the black-
padded image portion after the crop. Nonetheless, the cropping operation preserves the image
content proportion. This property is not true, in general, when performing a resize operation.
Another important hyperparameter involved in the process is the pre-trained model. In the most
simple and intuitive procedure, extracting features via a pre-trained model is not necessary as we
could compare directly images from di�erent datasets. Actually, comparing images is complicated
because of their size and also because most of them can contain wide uniform regions carrying a
small information amount. On the other hand, selecting a pre-trained model can help in provid-
ing informative features as output.
Deciding which pre-trained model to use will determine output features depending both on the
architecture and on the pre-train itself. In the histogram anlysis we applied a DenseNet201 pre-
trained on ImageNet. Instead, in the second approach, we used a Vision Transformer (ViT-L/16)
as presented in [60]. We changed the pre-trained model involved hoping to produce a more infor-
mative output, due both to the architecture and to the wider pre-trained, as Vision Transformers
are usually pre-trained on ImageNet-21k, a larger version of the traditional ImageNet. This idea
is also con�rmed by previous results such as the one shown in Table 3.5. On the other hand, ex-
tracting features via a Vision Transformer is more expensive in terms of inference time, as shown
in Table 3.4.

We now focus on hyperparameters speci�c to the adopted methodology.

• Histograms: an important aspect of the histogram analysis is the number of hyperparame-
ters involved in the process. In the next lines we will provide a full list of the hyperparame-
ters involved in the process:

- Bins number b: in order to obtain a proper histogram, we need to partition the feature
space into a �xed amount of bins. Having the same number of bins makes di�erent
datasets comparable. In our experiments, we used 20 bins.

- Percentile p: even if some pre-trained models force their output in a certain interval
value, this is not true in general. This can be a problem, as considering the maximum
of all the feature values in certain features will result in a very sparse histogram. To
address this problem we decided to force all the values above the 90-th percentile into
the last bin. This is visible in Figure 5.4, where the last bin is usually higher than
previous bins, as it contains all occurrences not belonging to the 90-th percentile.

• Random Fourier Features:

- Standard deviation σ: the �rst thing we consider in the random Fourier features pro-
cedure is the randomly generated matrix Ω. Such a matrix is generated according to
some standard deviation σ, in�uencing how each value deviates from the average of
the distribution. Therefore, di�erent values of σ can result in very di�erent outputs.
In our experiments we focused on σ ∈ [10−5, 10−1]
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Super Category Classes Images Duration(s) images/sec
Actinopterygii 53 2619 79.26 33.04

Amphibia 115 17703 305.83 57.88
Animalia 77 6590 137.12 48.06

Arachnida 56 5959 119.08 50.04
Aves 964 235521 3268.36 72.06

Chromista 9 542 61.75 8.78
Fungi 121 7606 149.74 50.80

Insecta 1021 118555 1769.64 66.99
Mammalia 186 32823 533.03 61.58
Mollusca 93 9377 170.91 54.87
Plantae1 2101 196613 2780.59 70.71
Protozoa 4 381 59.36 6.42
Reptilia 289 40881 657.78 62.15

Table 5.3: Information on the iNaturalist2017 dataset. We report the number of classes and images. We
also report time information about the features extraction via a Vision Transformer(ViT-L/16).

Figure 5.3: The internal hierarchy of the iNaturalist 2017 dataset. Every class belongs to a super category.

- Number of feature vectorsM : another important parameter related to the randomly
generated matrix Ω is the amount of column vector involved, determined a priori.
We showed that by increasing the value of M we get a better approximation of the
gaussian kernel, associated with an increased computational cost. In our experiments
we focused onM ∈ [5, 50]

iNaturalist dataset: to partly address the problems we had on the datasets shown in pre-
vious pages we decided to consider a new peculiar dataset called iNaturalist2017 [292]. It has been
introduced as part of the iNat Challenge 2017 large scale species classification competition. The
natural world contains at least several million species of plants and animals. Without speci�c
knowledge, many species are extremely di�cult to classify due to their visual similarity. The iNat-
uralist dataset contains approximately 5000 species grouped into thirteen super categories, with a
combined training and validation set of approximately half-million images collected and veri�ed.
We report some useful details about the dataset in Table 5.3.
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Figure 5.4: Two histograms produced by partitioning the feature number 18432 in 20 bins after extracting
them via a DenseNet201 pre-trained on ImageNet

We decided to focus on the iNaturalist dataset as it provides an internal hierarchy that we can
exploit to compare our metrics to. By following a procedure similar to the one explained in the
previous pages, we extracted the image features with a Vision Transformer. We also report as a
reference, the time needed to extract image features for every class via the Vision Transformer
architecture. The next step was to compute a centroid for every class via the random Fourier
features procedure described in the previous pages. The hierarchical structure of iNaturalist is
shown in Figure 5.3.

5.5 Experiments

In the previous sections, we saw that di�erent procedures can be applied to compute a distance
measure between distributions. In the following pages, we are going to show a set of empirical
analyses we performed on a bag of datasets from small to medium size.

5.5.1 Histogram analysis

A common practice to study di�erent distributions consists in estimating their distribution via
partitioning of the input space. Such an approach, as part of the non-parametric techniques, does
not rely on the labels nor on one a-priori choice of the functions involved to map our data.
In this �rst set of experiments, we preprocessed a bag of image datasets by standardizing and nor-
malizing their values and resizing them to the same size. This way we could consider a pre-trained
convolutional neural network, to map our input images to the same features subspace z. In this
sense: xt,i, 7→ zt,i = Φt(xt,i).
This way, a one-dimensional histogram can be computed for each of the T embedded datasets,
and for each coordinate s we can compute a histogram like the one de�ned by Equation 5.43.
Note that, each histogram Ĥs

t can be seen as an empirical approximation of the corresponding
marginalQst .
We can show in Figure 5.4 two instances of histogram produced as output from this procedure,
from the same feature, with di�erent datasets.
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Figure 5.5: Normalized heatmap produced by comparing four di�erent datasets: three about handwritten
digits, one about geometric shapes. The distance between the handwritten digits datasets is
smaller w.r.t. the one with the basic shapes

Following the above reasoning we obtain, for every dataset, a number of histograms equal to the
number of features. Then, an approximate distance metric between two datasets can be de�ned
as the summation of the distance between the same histograms coming from the two datasets:

d(Qi, Qj) ≈
p∑
s=1

d(Ĥs
i , Ĥ

s
j ) (5.44)

We can show the distance between four di�erent datasets in Figure 5.5. Three datasets are about
handwritten digits, one is instead about geometric shapes. We can notice that the distance between
the three handwritten digit datasets is smaller w.r.t. the one with the basic shapes.

After we obtained good results on such a simple scenario, we tested on similar contexts with a
reduced amount of datasets, obtaining similar results.
We decided to test it also on a more complicated setting. We included 35 di�erent datasets with
a huge overlap with the ones studied in chapter 3. All the details about such a group of datasets
can be found in Table 3.1. The results for such analysis are shown in Figure 5.6. We can notice
that some clusters are visible. For instance, cifar10 and cifar100 are close to one another. Also, the
distance between �ower datasets is small. This is also true for animal datasets such as Oxford-III
pets and Stanford dogs and cats vs dogs. At the same time, the distance between texture datasets
like euroSAT and DTD is small.

Overall with this �rst approach, we obtained mixed results as it produces coherent results when
dealing with simple contexts with few datasets such as the one shown in Figure 5.5. Moreover,
even on more complicated situations such as the one shown in Figure 5.6 similar datasets are closer
to one another w.r.t. visually di�erent datasets. On the other hand not having a ground truth to
compare our results to is problematic and not all the results included in the analysis are coherent.

114



5.5 Experiments

Figure 5.6: Normalized heatmap produced by comparing thirty-�ve di�erent datasets.

Moreover, the histogram approach requires a wide number of hyperparameters we need to �x
a-priori, making this approach susceptible to our choices.

5.5.2 Random Fourier Features analysis

By considering the theoretical framework introduced in the previous sections we performed an
empirical analysis of dataset distance via the random Fourier features technique. In practice, the
�rst steps of the procedure, like we already saw for the histograms, consisted in using a pre-trained
model to extract informative features from images. Then we multiplied, for every dataset, such
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Figure 5.7: Preliminary test with random fourier features. Four datasets are considered and split into three
subset strati�ed on the label. Subgroup belonging to the same dataset are closer to each other
w.r.t. other datasets.

features for the random matrix Ω. After duplicating the result and applying sine transformation to
the �rst half and cosine transformation to the second half of the output, we computed a column-
wise average.

In order to provide a preliminary test with the random Fourier features approach, we decided
to consider four di�erent datasets. We split each dataset into three subgroups, strati�ed on the
class label. Then, we computed the distance between each subgroup to very whether a dataset is,
in fact, closer to itself w.r.t. other datasets. The results of these preliminary experiments are shown
in Figure 5.7.

We can notice that subgroups belonging to the same dataset are closer to each other w.r.t. other
datasets. We can also notice that, aside from subgroups belonging to the same dataset, the two
closest datasets to one another are Oxford Flowers 102 and TensorFlow Flowers, which are visually
and conceptually similar.
The second test we performed was about including more datasets and checking their distance
according to the random Fourier features methodology. Even with six datasets, only the results
were worse than expected. However we decided to print a principal component analysis to two
dimensions of the data, resulting in the plot we show in Figure 5.8, where every point represents
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Figure 5.8: Principal component analysis of six datasets. Every point represents a class centroid. Points
with the same color correspond to centroids belonging to the same dataset.

the dimensionality reduced version of a class centroid. Points with the same color correspond to
centroids belonging to the same dataset.

We can observe that, even if the heatmap distance could provide non-optimal results, we can
still have a good clusterization on di�erent datasets.
Overall, we can state that we obtained mixed results on the considered contexts. One possible ex-
planation can be found in the total absence of ground truth to compare to. In this sense, once a
distance metric is computed we do not have a clear way to validate it.
To alleviate such a problem, we decided to consider the iNaturalist dataset as it provides an inter-
nal hierarchy that we can exploit to compare our metrics to.
Our analysis on the iNaturalist dataset started by addressing a simple question: does a distance
measure de�ned by the random Fourier features correlate to a taxonomical distance? To address
such a question we can consider Figure 5.3 where we can notice that two classes belonging to the
same super-category will have a taxonomical distance equal to 2. At the same time, classes belong-
ing to the di�erent super category will provide a taxonomical distance equal to 4.
We started by considering two super-categories: protozoa and chromista. For every class, between
every other class, we computed both the taxonomical distance and the distance according to ran-
dom Fourier features. We report the results in Figure 5.9(left)
We can notice that classes belonging to the same super-category, i.e. the ones with a taxonomical
distance equal to 2, result in random Fourier Feature distance that is lower w.r.t. classes belong-
ing to the di�erent super-categories. These results con�rmed our intuition about the similarity
between di�erent classes.
Then we planned a second experiment with the same setting but the number of super-categories
included was equal to three. The super-categories included in these experiments were: protozoa,
chromista, and Aactinopterygii corresponding again to the smallest number of classes between
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Figure 5.9: Correlation between taxonomical and random Fourier features distance. On the x-axis, we have
the taxonomical distance between every class and every other class included in the two super-
categories considered. On the y-axis, we have the corresponding distance according to the ran-
dom Fourier features procedure. (left) Two super categories involved (right) Three super cate-
gories involved

Figure 5.10: Principal component analysis of three super categories. Every point represents a class centroid.
Points with the same color correspond to centroids belonging to the same super-category

the iNaturalist dataset. Results are shown in Figure 5.9(right). In this setting we can see that the
representation of di�erent super-categories is less tidy, as apparently, it can happen that the ran-
dom Fourier Feature distance between two classes belonging to the same super-category can be
greater than the one between two classes belonging to di�erent super categories.
Guided by previous experiments with histograms, we also decided to check the clusterization of
super-categories in a latent space with a very low dimension by projecting our centroids via a PCA
technique. We can show such results in Figure 5.10
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Also in this situation we can notice that apparently, even with a low number of dimensions,
super-categories are well separated, providing promising results. It is worth noticing that a sit-
uation like the one shown in Figure 5.10 can partly explain the unsatisfactory results shown in
Figure 5.9(right). Indeed we can notice that even if classes are well separated in the latent space,
for instance, the distance between the two farthest classes of the Actinopterygii is comparable to
the distance between some couples of Actinopterygii and chromista classes, resulting in the cor-
relation plot shown before.

5.6 Discussion

In this chapter, we focused on di�erent methodologies to compute a distance measure between
di�erent datasets. Similarly to previous chapters, we focused on image classi�cation and even in
this context we saw that it can be arduous to compare di�erent classi�cation problems. Intuitively,
we tried to address the following question: given two datasets how can we measure how similar
they are? In other words, can we compute a distance measure between the two datasets?
We decided to address these questions because it can be interesting to quantify similarity in a more
principled way and to get an intuition about how di�erent datasets relate one to another. This
information could be very useful in all contexts where transferring information from previous
contexts is a common practice. like domain adaptation or transfer learning.
We saw that it can be di�cult to quantify this di�erence and build a relation between more than a
few datasets. We saw that we can use pre-trained convolutional neural networks or Vision Trans-
formers as feature extractors. Then we applied two di�erent techniques. In subsection 5.5.1 we
exploited histograms as feature density estimators to compute a distance measure between di�er-
ent datasets. In subsection 5.5.2 we considered the same group of datasets and we computed an
approximation of the gaussian kernel to compute the similarity between them. With both tech-
niques, we obtained mixed results. When dealing with a small number of datasets it is possible to
compute a coherent metric between di�erent datasets. This is con�rmed both with histograms
and the random Fourier features approach. At the same time, when working with a bigger amount
of dataset is it di�cult to have a clear scenario. However, further investigation about clusteriza-
tion in low-dimensional latent space via principal component analysis technique, resulted in a
good separation between di�erent datasets with both approaches, showing encouraging results
overall.
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Part III

Remarks and conclusions

121





6 Conclusions

Machine learning techniques spread in practical scenarios, is mostly due to the impossibility of tra-
ditional techniques to deal with simple problems that require the retrieval of speci�c task-related
information. However, machine learning has demonstrated remarkable capability to generalize
to previusly unseen data.
In chapter 2 we have seen that once we de�ned the basic ingredients needed in the machine learn-
ing context, i.e. task, performance measure, and experience, we can describe the problem with a
model depending on a large number of parameters, each one providing just a part of the proposed
solution. With the experience, coming from data and algorithm iterations we can optimize the pa-
rameter’s value to improve on a certain task according to the selected performance measure.
We have seen that di�erent machine learning settings, such as supervised and unsupervised learn-
ing or predictive and descriptive models, can be de�ned. The optimization process involved is
usually based on an iterative technique, computing the gradient of the parameters and moving
along the opposite direction.
A family of models fully relying on the optimization mechanism we just described, is the arti�cial
neural networks one. The use of neural networks became, in the last decade, a common practice.
In the beginning, neural networks were made of a very reduced amount of layers, with a limited
capacity to solve complicated problems. In the last decade the complexity of neural networks, eval-
uated on the number of parameters involved and the computational time needed to train them,
increased exponentially.
This set of methodologies we usually refer to as deep learning techniques became the de-facto
standard in a large variety of �elds. Their astonishing ability to solve di�erent kinds of problems
has been proven, from very simple and speci�c tasks to more general problems. Since 2012 with
the ImageNet large-scale visual recognition challenge(ILSVRC), the dominant approach has been
based on convolutional neural networks. Such models focus on a small portion of the image at-a-
time via the convolution operation.
Convolutional neural networks have been applied to a large set of research �elds including, but
not limited to, image recognition, speech recognition, object detection of images, video recogni-
tion, and natural language processing.
In the last two years a new approach, referred to as transformers, has been proposed showing state-
of-the-art performances in similar contexts to the ones covered by convolutional neural networks.

The huge improvement in performances obtained by recent models came at a cost from di�er-
ent points of view. The convolutional model introduced in 2012, i.e. AlexNet, which won the
ILSVRC competition was made by 62.3 million learnable parameters with a training time of be-
tween �ve and six days on two GPUs. Since 2012 a plethora of di�erent architectures has been pro-
posed with an increasing number of parameters. Some model families such as ResNet, E�cient-
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Net, and InceptionResNet stuck to a similar amount of parameters. Some others, like MobileNet,
decided to reduce the number of parameters involved in order to be run on embedded/mobile de-
vices. Nonetheless, architectures such as VGG moved in the opposite direction with more than
100 million learnable parameters.
Since 2017 with the introduction of the attention mechanism and the transformer architecture,
the number of parameters involved in the training process increased exponentially. Some of the
�rst introduced models had comparable parameters number w.r.t. convolutional models. Indeed,
models such as ELMo and BERT are made by 94 million and 340 million learnable parameters, re-
spectively. Nonetheless, many recent models pushed forward the number of learnable parameters
involved. For instance, The GPT-2 model and the Megatron-LM, introduced in 2019, involved
1.5 billion and 8.3 billion learnable parameters, respectively. The GPT-3 model and the Megatron-
Turing NLG models, introduced in 2020, involve more than a hundred billion parameters. The
massive increase in the number of parameters involved in the process is, at least partly, coherent
with the computational resources involved in the process: the amount of computation needed to
train a modern neural architecture moved approximately from 4 · 102 PFLOPS of AlexNet to
3 · 108 PFLOPS of GPT-3.
The amount of energy needed to train the more recent architecture increased drastically in the last
few years showing a problematic situation in terms of resources needed to obtain the next state-
of-the-art performance.

In this thesis, we have seen di�erent methodologies to alleviate the computational costs of some
typical machine learning problems.
In chapter 3 we focused on image classi�cation, considering a simple transfer learning approach
that exploits pre-trained convolutional features as input for a fast kernel method. By perform-
ing more than 3000 training processes, involving 32 target datasets and 99 di�erent settings, we
showed that this fast-kernel approach provides comparable accuracy w.r.t. �ne-tuning, with a
training time that is between one and two orders of magnitude smaller.
Our results suggested that the fast-kernel approach provides a useful alternative to �ne-tuning in
small/medium datasets, especially when training e�ciency is crucial. This is typical of robotics
devices and autonomous systems, where multiple training may need to be done on the �y. More-
over, our results showed that the marginal bene�t of �ne-tuning is low dependent on the neural
network architecture used as a pre-trained model. On the other hand, the choice of an appro-
priate pre-training dataset has a signi�cant impact on the obtained accuracy, particularly for the
fast-kernel methodology.
In chapter 4 we introduced and discussed the impossibility, of a clustering algorithm, to deal di-
rectly with images that, even with a low resolution, can have tens of thousands of dimensions. At
the same time, the feature output size of modern architecture is usually between a thousand to
tens of thousands of elements.
To this purpose, we implemented an unsupervised pipeline that projects the input to a latent space
with reduced dimension, making the clustering operation doable.
We tested our pipeline e�ectiveness in the plankton monitoring context where operating in an
unsupervised manner is crucial. Indeed, detecting and studying plankton populations in situ is
paramount to protecting marine ecosystems as they can be regarded as biosensors, re�ecting the
overall health of the oceans.
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In our work, we leveraged pre-trained neural network models to extract expressive feature maps
in an e�cient way, without �ne-tuning. We then use an encoder-decoder network architecture to
perform dimensionality reduction, producing low-dimensional embedded features that can then
be fed to a clustering algorithm. We assessed our methodology on three plankton datasets with
di�erent characteristics and increasing complexity.
In chapter 5 we introduced and discussed di�erent methodologies to compare two or more image
datasets. Indeed, each dataset can be seen as a set of points sampled by an unknown distribution
that we can estimate and analyze. Often, a key hallmark of deep learning models is the lack of good,
labeled data. To overcome this process, di�erent research �elds focus on transferring knowledge
from related but di�erent data distributions. In this sense, estimating such distributions can be
important to provide a better comprehension of our data and whether a set of data is suitable for
transferring information to a new setting.
We introduced di�erent ways to estimate such distributions such as histograms and kernel den-
sity estimation, coupled with various methodologies to compute distances between them such as
integral probability metrics and f-divergences.
Our results showed that, even on simple tasks involving images, the concept of dataset distance
is elusive and very complicated to quantify. In particular, three di�erent approaches were tested
providing similar results. Indeed, it is possible to obtain information on di�erent image datasets,
via good partitioning, as long as we analyze a small datasets subset.

Overall, in this thesis, we considered a set of techniques that can alleviate machine learning com-
putational costs. In our work, we focused on three di�erent e�ciency aspects: training time,
compressed data representation, and datasets distance. Each one of them focuses on a distinct
e�ciency aspect of machine learning e�ciency.
Aiming for computational e�ciency in machine learning tasks is necessary to reduce the greater
budget required nowadays by such models. Reducing the cost of modern machine learning algo-
rithms is going to be one of the greatest challenges we will face in the future, in order to keep them
computationally accessible to the scienti�c community.
The �eld of e�cient machine learning is dedicated to reducing the computational costs of ma-
chine learning models. It is constantly evolving through ongoing research and despite recent ad-
vances in this �eld, there are still several open problems and future research directions that need
to be addressed. One key area is training time e�ciency, where di�erent techniques can be em-
ployed to reduce the amount of time required to train complex models. Another important area
is data representation e�ciency, which seeks to optimize the way in which data is represented,
both in terms of compression and quality, to improve model accuracy and reduce computational
overhead. Finally, data scarcity is another critical issue that needs to be addressed. Despite the
signi�cant advancements made through specialized techniques in recent years, there is still ample
opportunity for further improvements in this �eld, particularly in the context of small and im-
balanced datasets. Addressing these open problems and developing new techniques to improve
machine learning e�ciency will be crucial for the continued growth and success of the �eld.
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