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with stochastic differential equations
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1. Input size?

3 tasks:

1 training

Answer: next slide

2. Robustness?

Answer: next sect.
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Diffusion 
model

Disclaimer:

Score, a noise generalization

Score, can be reduced to noise

Do not predict noise, predict score!
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Diffusion 
model

Approximate gradient with score:

Loss:

score modeled on the noise..
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Intuitively

Previous location

Score/gradient/noise direction

Stochastic noise
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Realism: Kernel Inception Distance (KID)

• Subsample images 

from same class

• Compute similarity

Faithfulness: L2

• Between guide 

and output
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Hard to compare generative methods

Faithfulness (pure number)

More realistic (comparison)

More satisfactory (comparison)
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• Effective generative method

• Robust

• Pretty slow




