

SDEdit Guided image synthesis and editing with stochastic differential equations

C Meng, Y He, Y Song, J Song, J Wu, JY Zhu, S Ermon Presented by: PD Alfano

Stroke Painting to Image

Stroke Painting to Image

Stroke Painting to Image

Stroke-based Editing

Source

Stroke-based Editing

Source

Input (guide)

Stroke-based Editing

Image Compositing

Source

Source

Input (guide)

Image Compositing

Input (guide)

Output

Problems & Intuition

Training

Experiments

Conclusions

1. Input size?

3 tasks: 1 training

Answer: next slide

6 chs

1. Input size?

3 tasks: 1 training

Answer: next slide

Input (guide)

1. Input size?

3 tasks: 1 training

Answer: next slide

Source Input (guide) Output

1. Input size?

3 tasks: 1 training

Answer: next slide

Source Input (guide) Output

2. Robustness?

Answer: next sect.

6 chs

9 chs

10 chs

Source Input (guide) Output

6 chs

9 chs

10 chs

6 chs

9 chs

10 chs

Source Input (guide) Output

6 chs

9 chs

10 chs

Source Input (guide) Output

6 chs

9 chs

10 chs

Source Input (guide) Output

6 chs

9 chs

10 chs

Source Input (guide) Output

Intuition

Intuition

Intuition

Input

Input

Input

Back in the days..

(Actually is 2021)

Back in the days..

(Actually is 2021)

Back in the days..

(Actually is 2021)

Back in the days..

(Actually is 2021)

Problems & Intuition

Training

Experiments

Conclusions

Similar to original diffusion. Given:

$$\mathbf{x}(t) \in \mathbb{R}^d \qquad t \in [0,1]$$

 $\mathbf{x}(0) \sim p_0 = p_{\text{data}}$

Similar to original diffusion. Given:

 $\mathbf{x}(t) \in \mathbb{R}^d$ $t \in [0,1]$ $\mathbf{x}(0) \sim p_0 = p_{\text{data}}$

$$\mathbf{x}(t) = \alpha(t)\mathbf{x}(0) + \sigma(t)\mathbf{z},$$

where: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$

Similar to original diffusion. Given:

 $\mathbf{x}(t) \in \mathbb{R}^d$ $t \in [0,1]$ $\mathbf{x}(0) \sim p_0 = p_{ ext{data}}$

$$\mathbf{x}(t) = \boldsymbol{\alpha}(t)\mathbf{x}(0) + \boldsymbol{\sigma}(t)\mathbf{z},$$

Weighted data

where: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, I)$,

Similar to original diffusion. Given:

 $\mathbf{x}(t) \in \mathbb{R}^d$ $t \in [0,1]$ $\mathbf{x}(0) \sim p_0 = p_{ ext{data}}$

$$\mathbf{x}(t) = \boldsymbol{\alpha}(t)\mathbf{x}(0) + \boldsymbol{\sigma}(t)\mathbf{z},$$

Weighted data Weighted noise

where: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, I)$,

Similar to original diffusion. Given:

 $\mathbf{x}(t) \in \mathbb{R}^d$ $t \in [0,1]$ $\mathbf{x}(0) \sim p_0 = p_{\text{data}}$

$$\mathbf{x}(t) = \boldsymbol{\alpha}(t)\mathbf{x}(0) + \boldsymbol{\sigma}(t)\mathbf{z},$$

Weighted data Weighted noise

where: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$ $\alpha(t) : [0, 1] \rightarrow [0, 1]$ $\sigma(t) : [0, 1] \rightarrow [0, \infty)$

 $\mathbf{x}(t) = \alpha(t)\mathbf{x}(0) + \sigma(t)\mathbf{z},$ $\alpha(t): [0,1] \to [0,1] \qquad \sigma(t): [0,1] \to [0,\infty)$

Two usual approaches:

• Variance Exploding SDE (VE-SDE)

For all t,
$$\alpha(t)=1$$

$$\mathbf{x}(t) = \alpha(t)\mathbf{x}(0) + \sigma(t)\mathbf{z},$$

$$\alpha(t): [0,1] \to [0,1] \quad \sigma(t): [0,1] \to [0,\infty)$$

Two usual approaches:

• Variance Exploding SDE (VE-SDE)

For all t,
$$\ lpha(t) = 1$$

$$\begin{aligned} \mathbf{x}(t) &= \alpha(t)\mathbf{x}(0) + \sigma(t)\mathbf{z}, \\ \alpha(t) : [0,1] \to [0,1] \quad \sigma(t) : [0,1] \to [0,\infty) \end{aligned}$$

Large
$$\sigma(1)$$
 so $\mathcal{N}(\mathbf{0},\sigma^{\mathbf{2}}(\mathbf{1})\mathbf{I})$ gaussian noise

Two usual approaches:

• Variance Exploding SDE (VE-SDE)

For all t,
$$\ lpha(t) = 1$$

$$\mathbf{x}(t) = \alpha(t)\mathbf{x}(0) + \sigma(t)\mathbf{z},$$

$$\alpha(t): [0,1] \to [0,1] \quad \sigma(t): [0,1] \to [0,\infty)$$

Large
$$\sigma(1)$$
 so $\mathcal{N}(\mathbf{0},\sigma^{\mathbf{2}}(\mathbf{1})\mathbf{I})$ gaussian noise

• Variance Preserving SDE (VP-SDE)

$$\alpha^2(t) + \sigma^2(t) = 1$$

Two usual approaches:

• Variance Exploding SDE (VE-SDE)

For all t,
$$\ lpha(t) = 1$$

$$\mathbf{x}(t) = \alpha(t)\mathbf{x}(0) + \sigma(t)\mathbf{z},$$

$$\alpha(t): [0,1] \to [0,1] \qquad \sigma(t): [0,1] \to [0,\infty)$$

Large
$$\sigma(1)$$
 so $\mathcal{N}(\mathbf{0},\sigma^{\mathbf{2}}(\mathbf{1})\mathbf{I})$ gaussian noise

• Variance Preserving SDE (VP-SDE)

$$\alpha^2(t) + \sigma^2(t) = 1 \qquad \qquad \alpha(t) \to 0 \quad \text{ as } \quad t \to 1$$

Disclaimer:

Score, a noise generalization

Disclaimer:

Score, a noise generalization

Score, can be reduced to noise

Disclaimer:

Score, a noise generalization

Score, can be reduced to noise

Do not predict noise, predict score!

Data distribution

Data distribution:

 $\log p_t(\mathbf{x})$

Data distribution

Data distribution:

 $\log p_t(\mathbf{x})$

Gradient:

$\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$

Data distribution

Data distribution:

 $\log p_t(\mathbf{x})$

Gradient:

$$\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$$

Approximate gradient $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ with score:

 $\boldsymbol{s}_{\boldsymbol{\theta}}(\mathbf{x}(t),t)$

Approximate gradient $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ with score:

 $\boldsymbol{s}_{\boldsymbol{\theta}}(\mathbf{x}(t),t)$

Loss:

$$L_t = \mathbb{E}_{\mathbf{x}(0) \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\|\sigma_t \boldsymbol{s}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) - \mathbf{z}\|_2^2]$$

score modeled on the noise..

Given gradient approximation

SDE solution via Euler-Maruyama method:

$$x(t) = x(t + \Delta t) + (\sigma^2(t) - \sigma^2(t + \Delta t))\mathbf{s}_{\theta}(x(t), t) + \sqrt{\sigma^2(t) - \sigma^2(t + \Delta t)}\mathbf{z}'$$

Given gradient approximation

SDE solution via Euler-Maruyama method:

$$x(t) = x(t + \Delta t) + (\sigma^2(t) - \sigma^2(t + \Delta t))\mathbf{s}_{\theta}(x(t), t) + \sqrt{\sigma^2(t) - \sigma^2(t + \Delta t)}\mathbf{z}'$$

Given gradient approximation

SDE solution via Euler-Maruyama method:

$$x(t) = x(t + \Delta t) + (\sigma^2(t) - \sigma^2(t + \Delta t))\mathbf{s}_{\theta}(x(t), t) + \sqrt{\sigma^2(t) - \sigma^2(t + \Delta t)}\mathbf{z}'$$

$$\varepsilon = \sqrt{\sigma^2(t) - \sigma^2(t + \Delta t)}$$

Disclaimer! Always known quantity!

Given gradient approximation

SDE solution via Euler-Maruyama method:

$$x(t) = x(t + \Delta t) + (\sigma^2(t) - \sigma^2(t + \Delta t))\mathbf{s}_{\theta}(x(t), t) + \sqrt{\sigma^2(t) - \sigma^2(t + \Delta t)}\mathbf{z}'$$

$$\varepsilon = \sqrt{\sigma^2(t) - \sigma^2(t + \Delta t)}$$

$$x(t) = x(t + \Delta t) + \varepsilon^2 \mathbf{s}_{\theta}(x(t), t) + \varepsilon \mathbf{z}'$$

$x(t) = x(t + \Delta t) + \varepsilon^2 \mathbf{s}_{\theta}(x(t), t) + \varepsilon \mathbf{z}'$

$$x(t) = x(t + \Delta t) + \varepsilon^2 \mathbf{s}_{\theta}(x(t), t) + \varepsilon \mathbf{z}'$$

Intuitively

Previous location

$$x(t) = x(t + \Delta t) + \varepsilon^2 \mathbf{s}_{\theta}(x(t), t) + \varepsilon \mathbf{z'}$$

Intuitively

Previous location

Score/gradient/noise direction

$x(t) = x(t + \Delta t) + \varepsilon^2 \mathbf{s}_{\theta}(x(t), t) + \varepsilon \mathbf{z'}$

Intuitively

Previous location Score/gradient/noise direction Stochastic noise

Output:

-) Realistic

-) Faithfull to guide

Output:

-) Realistic

-) Faithfull to guide

Fun fact: not positively correlated

Output:

-) Realistic

-) Faithfull to guide

Fun fact: not positively correlated

	Not Faithful	Faithful
Not Realistic		
Realistic		

Output:

-) Realistic

-) Faithfull to guide

Fun fact: not positively correlated

	Not Faithful	Faithful
Not Realistic		
Realistic		

Realism, faithfulness

Output:

-) Realistic

-) Faithfull to guide

Fun fact: not positively correlated

	Not Faithful	Faithful
Not Realistic		
Realistic		

Realism, faithfulness

Output:

-) Realistic

-) Faithfull to guide

Fun fact: not positively correlated

	Not Faithful	Faithful
Not Realistic		
Realistic		

Realism, faithfulness

Output:

-) Realistic

-) Faithfull to guide

Fun fact: not positively correlated

	Not Faithful	Faithful
Not Realistic		
Realistic		

KID and L₂

Realism: Kernel Inception Distance (KID)

- Subsample images from same class
- Compute similarity

KID and L₂

Realism: Kernel Inception Distance (KID)

- Subsample images • from same class
- Compute similarity ٠

Faithfulness: L₂

Between guide • and output

t influence

 $t \, \in \, [0,1]$

Set a proper t₀

t influence

 $t \in [0,1]$

Set a proper t₀

Compromise realism/faithfulness

t influence

Faithful Realistic $t \in [0,1]$ 20000 15000 pared 10000 squared 0.2 Set a proper t₀ KID 0.1 5000 7 Sweet spot Compromise realism/faithfulness 0 0.0 0.2 0.0 0.6 0.8 0.4 t₀ More faithful More realistic Less realistic Less faithful **SDEdit** Faithful Realistic $t_0 = 0$ $t_0 = 0.2$ $t_0 = 0.4$ $t_0 = 0.5$ $t_0 = 0.6$ $t_0 = 0.7$ $t_0 = 0.8$ $t_0 = 0.9$ $t_0 = 1$

Algorithm 1 Guided image synthesis and editing with SDEdit (VE-SDE)

Require: $\mathbf{x}^{(g)}$ (guide), t_0 (SDE hyper-parameter), N (total denoising steps)

Algorithm

Algorithm 1 Guided image synthesis and editing with SDEdit (VE-SDE)

Require: $\mathbf{x}^{(g)}$ (guide), t_0 (SDE hyper-parameter), N (total denoising steps) $\Delta t \leftarrow \frac{t_0}{N}$ $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathbf{x} \leftarrow \mathbf{x} + \sigma(t_0)\mathbf{z}$

Algorithm

Algorithm 1 Guided image synthesis and editing with SDEdit (VE-SDE)

Algorithm

Algorithm 1 Guided image synthesis and editing with SDEdit (VE-SDE)

Require: $\mathbf{x}^{(g)}$ (guide), t_0 (SDE hyper-parameter), N (total denoising steps) $\Delta t \leftarrow \frac{t_0}{N}$ $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathbf{x} \leftarrow \mathbf{x} + \sigma(t_0)\mathbf{z}$ for $n \leftarrow N$ to 1 do $t \leftarrow t_0 \frac{n}{N}$ $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\epsilon \leftarrow \sqrt{\sigma^2(t) - \sigma^2(t - \Delta t)}$ $\mathbf{x} \leftarrow \mathbf{x} + \epsilon^2 s_{\theta}(\mathbf{x}, t) + \epsilon \mathbf{z}$ end forReturn \mathbf{x}

Problems & Intuition

Training

Experiments

Conclusions

Hard to compare generative methods

Hard to compare generative methods

Faithfulness (pure number)

Baselines	Faithfulness score $(L_2) \downarrow$
In-domain GAN-1	101.18
In-domain GAN-2	57.11
StyleGAN2-ADA	68.12
e4e	53.76
SDEdit	32.55

Hard to compare generative methods

Faithfulness (pure number)

More realistic (comparison)

Baselines	Faithfulness score $(L_2) \downarrow$	SDEdit is more realistic (MTurk) \uparrow
In-domain GAN-1	101.18	94.96%
In-domain GAN-2	57.11	97.87%
StyleGAN2-ADA	68.12	98.09%
e4e	53.76	80.34%
SDEdit	32.55	_

Hard to compare generative methods

Faithfulness (pure number)

More realistic (comparison)

More satisfactory (comparison)

Baselines	Faithfulness score $(L_2) \downarrow$	SDEdit is more realistic (MTurk) \uparrow	SDEdit is more satisfactory (Mturk) \uparrow
In-domain GAN-1	101.18	94.96%	89.48%
In-domain GAN-2	57.11	97.87%	89.51%
StyleGAN2-ADA	68.12	98.09%	91.72%
e4e	53.76	80.34%	75.43%
SDEdit	32.55	2 <u>-</u> 1	-

Qualitative

Qualitative

Qualitative

Problems & Intuition

Training

Experiments

Conclusions

Conclusions

• Effective generative method

Conclusions

• Effective generative method

• Robust

Conclusions

• Effective generative method

• Robust

• Pretty slow

